安徽省霍邱县正华外语学校2023年数学高二上期末调研模拟试题含解析_第1页
安徽省霍邱县正华外语学校2023年数学高二上期末调研模拟试题含解析_第2页
安徽省霍邱县正华外语学校2023年数学高二上期末调研模拟试题含解析_第3页
安徽省霍邱县正华外语学校2023年数学高二上期末调研模拟试题含解析_第4页
安徽省霍邱县正华外语学校2023年数学高二上期末调研模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省霍邱县正华外语学校2023年数学高二上期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点,点在抛物线上,过点的直线与直线垂直相交于点,,则的值为()A. B.C. D.2.已知的周长等于10,,通过建立适当的平面直角坐标系,顶点的轨迹方程可以是()A. B.C. D.3.一个几何体的三视图都是半径为1的圆,在该几何体内放置一个高度为1的长方体,则长方体的体积最大值为()A. B.C. D.14.俗话说“好货不便宜,便宜没好货”,依此判断,“不便宜”是“好货”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件5.金刚石的成分为纯碳,是自然界中天然存在的最坚硬物质,它的结构是由8个等边三角形组成的正八面体.若某金刚石的棱长为2,则它的体积为()A. B.C. D.6.已知函数,.若存在三个零点,则实数的取值范围是()A. B.C. D.7.过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为.若,则双曲线的离心率是A. B.C. D.8.接种疫苗是预防控制新冠疫情最有效的方法,我国自2021年1月9日起实施全民免费接种新冠疫苗并持续加快推进接种工作.某地为方便居民接种,共设置了A、B、C三个新冠疫苗接种点,每位接种者可去任一个接种点接种.若甲、乙两人去接种新冠疫苗,则两人不在同一接种点接种疫苗的概率为()A. B.C. D.9.直线的倾斜角的大小为()A. B.C. D.10.已知F(3,0)是椭圆的一个焦点,过F且垂直x轴的弦长为,则该椭圆的方程为()A.+=1 B.+=1C.+=1 D.+=111.已知点分别为圆与圆的任意一点,则的取值范围是()A. B.C. D.12.黄金矩形是宽()与长()的比值为黄金分割比的矩形,如图所示,把黄金矩形分割成一个正方形和一个黄金矩形,再把矩形分割出正方形.在矩形内任取一点,则该点取自正方形内的概率是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,用四种不同的颜色分别给A,B,C,D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法的种数为______(用数字作答)14.已知椭圆()中,成等比数列,则椭圆的离心率为_______.15.已知正三棱柱中,底面积为,一个侧面的周长为,则正三棱柱外接球的表面积为______.16.用1,2,3,4排成的无重复数字的四位数中,其中1和2不能相邻的四位数的个数为___________(用数字作答).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,直线的参数方程为(为参数).以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)求直线的普通方程,曲线C的直角坐标方程;(2)设直线与曲线C相交于A,B两点,点,求的值.18.(12分)已知直线:和:(1)若,求实数m的值;(2)若,求实数m的值19.(12分)如图,P为圆上一动点,点A坐标为,线段AP的垂直平分线交直线BP于点Q(1)求点Q的轨迹E的方程;(2)过点A的直线l交E于C,D两点,若△BCD内切圆的半径为,求直线l的方程.20.(12分)已知单调递增的等比数列满足:,且是,的等差中项(1)求数列的通项公式;(2)若,,求21.(12分)设数列的前项和为,为等比数列,且,(1)求数列和的通项公式;(2)设,求数列的前项和22.(10分)已知椭圆的左、右焦点分别为,,离心率为,过的直线与椭圆交于,两点,若的周长为8.(1)求椭圆的标准方程;(2)设为椭圆上的动点,过原点作直线与椭圆分别交于点、(点不在直线上),求面积的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题,由于过抛物线上一点的直线与直线垂直相交于点,可得,又,故,所以的坐标为,由余弦定理可得.故选:D.考点:抛物线的定义、余弦定理【点睛】本题主要考查抛物线的定义与性质,考查学生的计算能力,属于中档题2、A【解析】根据椭圆的定义进行求解即可.【详解】因为的周长等于10,,所以,因此点的轨迹是以为焦点的椭圆,且不在直线上,因此有,所以顶点的轨迹方程可以是,故选:A3、B【解析】根据题意得到几何体为半径为1的球,长方体的体对角线为球的直径时,长方体体积最大,设出长方体的长和宽,得到等量关系,利用基本不等式求解体积最大值.【详解】由题意得:此几何体为半径为1的球,长方体为球的内接长方体时,体积最大,此时长方体的体对角线为球的直径,设长方体长为,宽为,则由题意得:,解得:,而长方体体积为,当且仅当时等号成立,故选:B4、A【解析】将“好货”与“不便宜”进行相互推理即可求得答案.【详解】根据题意,“好货”一定“不便宜”,但是“不便宜”不一定是“好货”,所以“不便宜”是“好货”的必要不充分条件.故选:A.5、C【解析】由几何关系先求出一个正四面体的高,再结合锥体体积公式即可求解正八面体的体积.【详解】如图,设底面中心为,连接,由几何关系知,,则正八面体体积为.故选:C6、B【解析】根据题意,当时,有一个零点,进而将问题转化为当时,有两个实数根,再研究函数即可得答案.【详解】解:因为存在三个零点,所以方程有三个实数根,因为当时,由得,解得,有且只有一个实数根,所以当时,有两个实数根,即有两个实数根,所以令,则,所以当时,,单调递增,当时,,单调递减,因为,,,所以的图象如图所示,所以有两个实数根,则故选:B7、C【解析】直线l:y=-x+a与渐近线l1:bx-ay=0交于B,l与渐近线l2:bx+ay=0交于C,A(a,0),∴,∵,∴,b=2a,∴,∴,∴考点:直线与圆锥曲线的综合问题;双曲线的简单性质8、C【解析】利用古典概型的概率公式可求出结果【详解】由题知,基本事件总数为甲、乙两人不在同一接种点接种疫苗的基本事件数为由古典概型概率计算公式可得所求概率故选:9、B【解析】由直线方程,可知直线的斜率,设直线的倾斜角为,则,又,所以,故选10、C【解析】根据已知条件求得,由此求得椭圆的方程.【详解】依题意,所以椭圆方程为.故选:C11、B【解析】先判定两圆的位置关系为相离的关系,然后利用几何方法得到的取值范围.【详解】的圆心为,半径,的圆心为,半径,圆心距,∴两圆相离,∴,故选:B.12、C【解析】设矩形的长,宽分别为,所以,把黄金矩形分割成一个正方形和一个黄金矩形,所以,设矩形的面积为,正方形的面积为,设在矩形内任取一点,则该点取自正方形内的概率是,则,故本题选C.【详解】本题考查了几何概型,考查了运算能力.二、填空题:本题共4小题,每小题5分,共20分。13、48【解析】由已知按区域分四步,然后给,,,区域分步选择颜色,由此即可求解【详解】解:由已知按区域分四步:第一步区域有4种选择,第二步区域有3种选择,第三步区域有2种选择,第四步区域也有2种选择,则由分步计数原理可得共有种,故答案为:4814、【解析】根据成等比数列,可得,再根据的关系可得,然后结合的自身范围解方程即可求出【详解】∵成等比数列,∴,∴,∴,∴,又,∴故答案为:【点睛】本题主要考查椭圆的离心率的计算以及等比数列定义的应用,意在考查学生的数学运算能力,属于基础题15、【解析】首先由条件求出底面边长和高,然后设、分别为上、下底面的的中心,连接,设的中点为,则点为正三棱柱外接球的球心,然后求出的长度即可.【详解】如图所示,设底面边长为,则底面面积为,所以,因此等边三角形的高为:,因为一个侧面的周长为,所以设、分别为上、下底面的的中心,连接,设的中点为则点为正三棱柱外接球的球心,连接、则在直角三角形中,即外接球的半径为,所以外接球的表面积为,故答案为:【点睛】关键点睛:求几何体的外接球半径的关键是根据几何体的性质找出球心的位置.16、【解析】利用插空法计算出正确答案.【详解】先排,形成个空位,然后将排入,所以符合题意的四位数的个数为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)直线的普通方程为;曲线C的直角坐标方程为(2)【解析】(1)根据转换关系将参数方程和极坐标方程转化为直角坐标方程即可;(2)将直线的参数方程化为标准形式,代入曲线C的直角坐标方程,设点A,B对应的参数分别为,利用韦达定理即可得出答案.【小问1详解】解:将直线的参数方程中的参数消去得,则直线的普通方程为,由曲线C的极坐标方程为,得,即,由得曲线C的直角坐标方程为;【小问2详解】解:点满足,故点在直线上,将直线的参数方程化为标准形式(为参数),代入曲线C的直角坐标方程为,得,设点A,B对应的参数分别为,则,所以.18、(1)2(2)或【解析】(1)易知两直线的斜率存在,根据,由斜率相等求解.(2)分和,根据,由直线的斜率之积为-1求解.【小问1详解】由直线的斜率存在,且为,则直线的斜率也存在,且为,因为,所以,解得或2,①当时,由此时直线,重合,②当时,,此时直线,平行,综上:若,则实数m的值为2【小问2详解】①当时,直线斜率为0,此时若必有,不可能.②当时,若必有,解得,由上知若,则实数m的值为或19、(1)(2)【解析】(1)连接,由,利用椭圆的定义求解;(2)设点,,直线的方程为,与椭圆联立,结合韦达定理,利用等面积法求解.【小问1详解】解:连接,由题意知:,,即的轨迹为椭圆,其中,,,所以椭圆的标准方程为;【小问2详解】设点,,直线的方程为,与椭圆联立,消去整理得,显然成立,故,,由椭圆定义得的周长为,则的面积,又由,得,从而得,即,整理得,解得,故,故直线的方程为.20、(1);(2)【解析】(1)将已知条件整理变形为等比数列的首项和公比来表示,解方程组得到基本量,可得到通项公式(2)化简通项得,根据特点求和时采用错位相减法求解试题解析:(1)设等比数列的首项为,公比为,依题意,有2()=+,代入,得=8,2分∴+=20∴解之得或4分又单调递增,∴="2,"=2,∴=2n6分(2),∴①8分∴②∴①-②得=12分考点:1.等比数列通项公式;2.错位相减求和21、(1),;(2)【解析】(1)由已知利用递推公式,可得,代入分别可求数列的首项,公比,从而可求.(2)由(1)可得,利用乘“公比”错位相减法求和【详解】解:(1)当时,,当时,满足上式,故的通项式为设的公比为,由已知条件知,,,所以,,即(2),两式相减得:【点睛】本题考查等差数列、等比数列的求法,错位相减法求数列通项,属于中档题.22、(1);(2).【解析】(1)根据周长可求,再根据离心率可求,求出后可求椭圆的方程.(2)当直线轴时,计算可得的面积的最大值为,直线不垂直轴时,可设,联立直线方程和椭圆方程可求,设与平行且与椭圆相切的直线为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论