2024届山西省太原市山西大学附中高二数学第一学期期末学业水平测试试题含解析_第1页
2024届山西省太原市山西大学附中高二数学第一学期期末学业水平测试试题含解析_第2页
2024届山西省太原市山西大学附中高二数学第一学期期末学业水平测试试题含解析_第3页
2024届山西省太原市山西大学附中高二数学第一学期期末学业水平测试试题含解析_第4页
2024届山西省太原市山西大学附中高二数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山西省太原市山西大学附中高二数学第一学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列为递增等比数列,,则数列的前2019项和()A. B.C. D.2.已知函数,若,则等于()A. B.1C.ln2 D.e3.若集合,,则A. B.C. D.4.已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于()A.3 B.6C.8 D.125.设变量,满足约束条件,则的最大值为()A.1 B.6C.10 D.136.已知向量,,若与共线,则实数值为()A. B.C.1 D.27.抛物线的顶点在原点,对称轴是x轴,点在抛物线上,则抛物线的方程为()A. B.C. D.8.已知圆的方程为,圆的方程为,其中.那么这两个圆的位置关系不可能为()A.外离 B.外切C.内含 D.内切9.焦点坐标为的抛物线的标准方程是()A. B.C. D.10.函数的图像大致是()A. B.C. D.11.直线的倾斜角是A. B.C. D.12.已知三棱锥O—ABC,点M,N分别为线段AB,OC的中点,且,,,用,,表示,则等于()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某校组织了一场演讲比赛,五位评委对某位参赛选手的评分分别为9,x,8,y,9.已知这组数据的平均数为8.6,方差为0.24,则______14.已知数列满足,定义使()为整数的k叫做“幸福数”,则区间内所有“幸福数”的和为_____15.一个物体的运动方程为其中位移的单位是米,时间的单位是秒,那么物体在秒末的瞬时速度是__________米/秒16.经过两点的双曲线的标准方程是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,正三棱柱的侧棱长为,底面边长为,点为的中点,点在直线上,且(1)证明:面;(2)求平面和平面夹角的余弦值18.(12分)已知数列满足且(1)求证:数列为等差数列,并求数列的通项公式;(2)设,求数列的前n项和为.19.(12分)已知函数.(1)当时,求的极值;(2)当时,,求a的取值范围.20.(12分)已知圆,直线的斜率为2,且过点(1)判断与的位置关系;(2)若圆,求圆与圆的公共弦长21.(12分)已知三棱柱中,,,平面ABC,,E为AB中点,D为上一点(1)求证:;(2)当D为中点时,求平面ADC与平面所成角的正弦值22.(10分)已知函数f(x)=x3+ax2+2,x=2是f(x)的一个极值点.(1)求实数a的值;(2)求f(x)在区间(-1,4]上的最大值和最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据数列为递增的等比数列,,利用“”法求得,再代入等比数列的前n项和公式求解.【详解】因为数列为递增等比数列,所以,解得:,所以.故选:C【点睛】本题主要考查等比数列的基本运算,还考查了运算求解的能力,属于基础题.2、D【解析】求导,由得出.【详解】,故选:D3、A【解析】通过解不等式得出集合B,可以做出集合A与集合B的关系示意图,可得出选项.【详解】因为,解不等式即,所以或,所以集合,作出集合A与集合B的示意图如下图所示:所以:,故选A【点睛】本题考查集合间的交集运算,属于基础题.4、B【解析】根据椭圆中的关系即可求解.【详解】椭圆的长轴长为10,焦距为8,所以,,可得,,所以,可得,所以该椭圆的短轴长,故选:B.5、C【解析】画出约束条件表示的平面区域,将变形为,可得需要截距最小,观察图象,可得过点时截距最小,求出点A坐标,代入目标式即可.【详解】解:画出约束条件表示的平面区域如图中阴影部分:又,即,要取最大值,则在轴上截距要最小,观察图象可得过点时截距最小,由,得,则.故选:C.6、D【解析】根据空间向量共线有,,结合向量的坐标即可求的值.【详解】由题设,有,,则,可得.故选:D7、B【解析】首先根据题意设出抛物线的方程,利用点在曲线上的条件为点的坐标满足曲线的方程,代入求得参数的值,最后得到答案.【详解】解:根据题意设出抛物线的方程,因为点在抛物线上,所以有,解得,所以抛物线的方程是:,故选:B.8、C【解析】求出圆心距的取值范围,然后利用圆心距与半径的和差关系判断.【详解】由两圆的标准方程可得,,,;则,所以两圆不可能内含.故选:C.9、D【解析】依次确定选项中各个抛物线的焦点坐标即可.【详解】对于A,的焦点坐标为,A错误;对于B,的焦点坐标为,B错误;对于C,焦点坐标为,C错误;对于D,的焦点坐标为,D正确.故选:D.10、B【解析】由导数判断函数的单调性及指数的增长趋势即可判断.【详解】当时,,∴在上单调递增,当时,,∴在上单调递减,排除A、D;又由指数函数增长趋势,排除C.故选:B11、D【解析】由方程得到斜率,然后可得其倾斜角.【详解】因为直线的斜率为所以其倾斜角为故选:D12、A【解析】利用空间向量基本定理进行计算.【详解】.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】根据平均数和方差的计算公式,求得,则问题得解.【详解】由题可知:整理得:;,整理得:,联立方程组得,解得或,对应或,故.故答案为:1.14、2036【解析】先用换底公式化简之后,将表示出来,找出满足条件的“幸福数”,然后求和即可.【详解】当时,,所以,若满足正整数,则,即,所以在内的所有“幸福数”的和为:,故答案为:2036.15、5【解析】,16、【解析】设双曲线的标准方程将点坐标代入求参数,即可确定标准方程.【详解】令,则,可得,令,则,无解.故双曲线的标准方程是.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)证明平面,可得出,再由结合线面垂直的判定定理可证得结论成立;(2)以点为坐标原点,、、的方向分别为、、轴的正方向建立空间直角坐标系,利用空间向量法可求得结果.【小问1详解】证明:正中,点为的中点,,因为平面,平面,则,,则平面,平面,则,又,且,平面.【小问2详解】解:因为,以点为坐标原点,、、的方向分别为、、轴的正方向建立如下图所示的空间直角坐标系,则、、、,设平面的法向量为,,,则,取,可得,平面,平面,则,又因为,,故平面,所以,平面的一个法向量为,则.因此,平面和平面夹角的余弦值为.18、(1)证明见解析,;(2).【解析】(1)对递推公式进行变形,结合等差数列的定义进行求解即可;(2)运用裂项相消法进行求解即可.【小问1详解】因为,且,所以即,所以数列是公差为2的等差数列.又,所以即;【小问2详解】由(1)得,所以.故.19、(1)极大值,没有极小值(2)【解析】(1)把代入,然后对函数求导,结合导数可求函数单调区间,即可得解;(2)构造函数,将不等式的恒成立转化为函数的最值问题,结合导数与单调性及函数的性质对进行分类讨论,其中当和时易判断函数的单调性以及最小值,而当时,的最小值与0进一步判断【小问1详解】当时,的定义域为,.当时,,当时,,所以在上为增函数,在上为减函数.故有极大值,没有极小值.【小问2详解】当时,恒成立等价于对于任意恒成立.令,则.若,则,所以在上单调递减,所以,符合题意.若,所以在上单调递减,,符合题意.若,当时,,当时,,所以在上单调递减,在上单调递增,所以,不合题意.综上可知,a的取值范围为.【点睛】关键点点睛:本题考查了不等式恒成立问题,其关键是构造函数,通过讨论参数在不同取值范围时函数的单调性,求出函数的最值,解出参数的范围.必要时二次求导.20、(1)与相切;(2)【解析】(1)求出圆C的圆心坐标,半径和直线l的方程,根据圆心到直线的距离即可判断直线与圆的位置关系;(2)圆与圆的方程相减,可求出公共弦所在的直线方程,然后根据圆M的圆心到公共弦所在直线的距离及圆M的半径即可求出公共弦长.【小问1详解】由圆,可得,所以圆心为,半径,直线的方程为,即因为圆心到的距离为,所以与相切【小问2详解】联立方程可得,作差可得,即,即公共弦所在直线的方程为易知圆的半径,圆心到直线的距离为,则公共弦长21、(1)证明见解析;(2).【解析】(1)利用线面垂直的性质定理及线面垂直的判定定理即证;(2)利用坐标法即求.【小问1详解】∵,E为AB中点,∴,∵平面ABC,平面ABC,∴,又,,∴平面,平面,∴;【小问2详解】以C点为坐标原点,CA,CB,分别为x,y,z轴建立空间直角坐标系,不妨设,则平面的法向量为,设平面ADC法向量为,则,∴,即,令,则∴平面ADC与平面所成角的余弦值为,所以平面ADC与平面所成角的正

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论