版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南省益阳市资阳区第六中学高二数学第一学期期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.椭圆的焦点坐标是()A.(±4,0) B.(0,±4)C.(±5,0) D.(0,±5)2.已知双曲线的实轴长为10,则该双曲线的渐近线的斜率为()A. B.C. D.3.已知、分别是双曲线的左、右焦点,为一条渐近线上的一点,且,则的面积为()A. B.C. D.14.已知为椭圆的两个焦点,过的直线交椭圆于两点,若,则()A. B.C. D.5.已知数列的前项和满足,记数列的前项和为,.则使得的值为()A. B.C. D.6.已知圆上有三个点到直线的距离等于1,则的值为()A. B.C. D.17.在中,角A,B,C所对的边分别为a,b,c,,,则()A. B.1C.2 D.48.某几何体的三视图如图所示,则其对应的几何体是A. B.C. D.9.经过点A(0,-3)且斜率为2的直线方程为()A. B.C. D.10.双曲线x21的渐近线方程是()A.y=±x B.y=±xC.y=± D.y=±2x11.在等差数列中,为数列的前项和,,,则数列的公差为()A. B.C.4 D.12.如图所示,已知是椭圆的左、右焦点,为椭圆的上顶点,在轴上,,且是的中点,为坐标原点,若点到直线的距离为3,则椭圆的方程为()A B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知平面和两条不同的直线,则下列判断中正确的序号是___________.①若,则;②若,则;③若,则;④若,则;14.的展开式中所有项的系数和为_________15.已知函数,若在定义域内有两个零点,那么实数a的取值范围为___________.16.从某校随机抽取某次数学考试100分以上(含100分,满分150分)的学生成绩,将他们的分数数据绘制成如图所示频率分布直方图.若共抽取了100名学生的成绩,则分数在内的人数为___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)当时,讨论的单调性;(2)当时,证明18.(12分)已知点、分别是椭圆C:)的左、右焦点,点P在椭圆C上,当∠PF1F2=时,面积达到最大,且最大值为.(1)求椭圆C的标准方程;(2)设直线l:与椭圆C交于A、B两点,求面积的最大值.19.(12分)已知命题p:,命题q:.(1)若命题p为真命题,求实数x的取值范围.(2)若p是q的充分条件,求实数m的取值范围;20.(12分)已知圆.(1)若不过原点的直线与圆相切,且直线在两坐标轴上的截距相等,求直线的方程;(2)求与圆和直线都相切的最小圆的方程.21.(12分)已知等差数列}的公差为整数,为其前n项和,,(1)求{}的通项公式:(2)设,数列的前n项和为,求22.(10分)已知函数.(1)记函数,当时,讨论函数的单调性;(2)设,若存在两个不同的零点,证明:为自然对数的底数).
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据椭圆的方程求得的值,进而求得椭圆的焦点坐标,得到答案.【详解】由椭圆,可得,则,所以椭圆的焦点坐标为和.故选:A.2、B【解析】利用双曲线的实轴长为,求出,即可求出该双曲线的渐近线的斜率.【详解】由题意,,所以,,所以双曲线的渐近线的斜率为.故选:B.【点睛】本题考查双曲线的方程与性质,考查学生的计算能力,属于基础题.3、A【解析】先表示出渐近线方程,设出点坐标,利用,解出点坐标,再按照面积公式求解即可.【详解】由题意知,双曲线渐近线方程为,不妨设在上,设,由得,解得,的面积为.故选:A.4、C【解析】根据椭圆的定义可得,由即可求解.【详解】由,可得根据椭圆的定义,所以.故选:C5、B【解析】由,求得,得到,结合裂项法求和,即可求解.【详解】数列的前项和满足,当时,;当时,,当时,适合上式,所以,则,所以.故选:B.6、A【解析】求出圆心和半径,由题意可得圆心到直线的距离,列方程即可求得的值.【详解】由圆可得圆心,半径,因为圆上有三个点到直线的距离等于1,所以圆心到直线的距离,可得:,故选:A.7、C【解析】直接运用正弦定理可得,解得详解】由正弦定理,得,所以故选:C8、A【解析】根据三视图即可还原几何体.【详解】根据三视图,特别注意到三视图中对角线的位置关系,容易判断A正确.【点睛】本题主要考查了三视图,属于中档题.9、A【解析】直接代入点斜式方程求解即可详解】因为直线经过点且斜率为2,所以直线的方程为,即,故选:10、D【解析】根据双曲线渐近线定义即可求解.【详解】双曲线的方程为,双曲线的渐近线方程为,故选:D【点睛】本题主要考查了双曲线的简单几何性质,属于容易题.11、A【解析】由已知条件列方程组求解即可【详解】设等差数列的公差为,因为,,所以,解得,故选:A12、D【解析】由题设可得,直线的方程为,点线距离公式表示到直线的距离,又联立解得即可得出答案.【详解】且,则△是等边三角形,设,则①,∴直线方程为,即,∴到直线的距离为②,又③,联立①②③,解得,,故椭圆方程为.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、②④【解析】根据直线与直线,直线与平面的位置关系依次判断每个选项得到答案.详解】若,则或,异面,或,相交,①错误;若,则,②正确;若,则或或与相交,③错误;若,则,④正确;故答案为:②④.14、##0.015625【解析】赋值法求解二项式展开式中所有项的系数和.【详解】令得:,即为展开式中所有项的系数和.故答案为:15、【解析】先求定义域,再求导,针对分类讨论,结合单调性,极值,最值得到,研究其单调性及其零点,求出结果.【详解】定义域为,,当时,恒成立,在单调递减,不会有两个零点,故舍去;当时,在上,单调递增,在上,单调递减,故,又因为时,,时,,故要想在定义域内有两个零点,则,令,,,单调递增,又,故当时,.故答案为:16、30【解析】根据频率分布直方图中所以小矩形面积和为1,可得a值,根据总人数和频率,即可得答案.【详解】因为频率分布直方图中所以小矩形面积和为1,所以,解得,所以分数在内的人数为.故答案为:30三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递减,在单调递增;(2)见解析.【解析】(1)求f(x)导数,讨论导数的正负即可求其单调性;(2)由于,则,只需证明,构造函数,证明其最小值大于0即可.【小问1详解】时,,当时,,∴,当时,,∴,∴在单调递减,在单调递增;【小问2详解】由于,∴,∴只需证明,令,则,∴在上为增函数,而,∴在上有唯一零点,且,当时,,g(x)单调递减,当时,,g(x)单调递增,∴的最小值为,由,得,则,∴,当且仅当时取等号,而,∴,∴,即,∴当时,.【点睛】本题考察了利用导数研究函数的单调性,也考察了利用导数研究函数的最值,解题过程中设计到隐零点的问题,需要掌握隐零点处理问题的常见思路和方法.18、(1)(2)3【解析】(1)根据焦点三角形的性质可求出,从而可得标准方程,(2)联立直线方程和椭圆方程,消元后利用公式表示三角形面积,从而可求面积的最大值.小问1详解】△PF1F2面积达到最大时为椭圆的上顶点或下顶点,而此时∠PF1F2=,故面积最大时为等边三角形,故,因面积的最大值为,故,故,故椭圆的标准方程为:.【小问2详解】设,则由可得,此时恒成立.而,到的距离为,故的面积,令,设,则,故在上为增函数,故即的最大值为3.19、(1);(2).【解析】(1)由一元二次不等式的解法求得的范围;(2)由p是q的充分条件,转化为集合的包含关系,从而可求实数m的取值范围.【详解】(1)由p:为真,解得.(2)q:,若p是q的充分条件,则是的子集所以.即.20、(1)或;(2).【解析】(1)根据题意设出直线的方程,然后根据直线与圆相切,即可求出答案;(2)首先根据题意判断出最小圆的圆心在直线上,且最小圆的半径为,然后设出最小圆的圆心为,则圆心到直线的距离为,从而可求出答案.【小问1详解】因为直线不过原点,设直线的方程为,圆的标准方程为,若直线与圆相切,则,即,解得或者3,所以直线的方程为或者;【小问2详解】因为,所以直线与圆相离,所以所求最小圆的圆心一定在圆的圆心到直线的垂线段上,即最小圆的圆心在直线上,且最小圆的半径为,设最小圆的圆心为,则圆心到直线的距离为,所以,即,解得(舍)或,所以最小的圆的方程为.21、(1)(2)【解析】(1)根据题意利用等差数列的性质列出方程,即可解得答案;(2)根据(1)的结果,求出的表达式,利用裂项求和的方法求得答案.小问1详解】设等差数列{}的公差为d,则,整理可得:,∵d是整数,解得,从而,所以数列{}的通项公式为:;【小问2详解】由(1)知,,所以22、(1)在和上单调递增;在上单调递减(2)证明见解析【解析】(1)先求导,然后对导数化简整理后再解不等式即可得单调性;(2)要证明,通过求函数的极值可证明,要证,根据有两个不同的零点,将问题转化为证明成立,再通过换元从求函数的最值上证明.【小问1详解】因为,所以,令,得或.所以时,或;时,.所以在和上单调递增;在上单调递减.【小问2详解】因为,所以.当时,,可得在上单调递减,此时不可能存在两个不同
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年版高楼外墙装饰施工协议版B版
- 2024年新版建筑工程预算定额合同
- 2024年样品机器试用协议模板一
- 2024年标准型搅拌机销售协议范本版B版
- 2024年小学二年级数学(北京版)-总复习:综合练习-1教案
- 2018房地产经纪人考试《业务操作》试题
- 2024年度基础设施建设投资借款协议范本3篇
- 2025年衢州货运从业资格证模拟考试题库下载
- 2025年沧州考货运上岗证试答题
- 单位人事管理制度展示合集
- 河北省石家庄市2023-2024学年六年级上学期期末科学试卷(含答案)
- 中国儿童呼吸道合胞病毒感染诊疗及预防指南(2024医生版)解读课件
- 幕墙施工重点难点及解决方案
- 年度成本管控的实施方案
- 2024年中国板钉式空气预热器市场调查研究报告
- 人教版八年级上册数学期末考试试卷附答案
- DB1331T 041-2023 雄安新区绿色街区规划设计标准
- 北京市海淀区2022届高三上学期期末考试政治试题 含答案
- 初中七年级主题班会:如何正确对待自己的错误(课件)
- 中华民族共同体概论学习通超星期末考试答案章节答案2024年
- 2024年航空职业技能鉴定考试-航空票务知识考试近5年真题集锦(频考类试题)带答案
评论
0/150
提交评论