2024届广西南宁市三十三中学高二数学第一学期期末监测模拟试题含解析_第1页
2024届广西南宁市三十三中学高二数学第一学期期末监测模拟试题含解析_第2页
2024届广西南宁市三十三中学高二数学第一学期期末监测模拟试题含解析_第3页
2024届广西南宁市三十三中学高二数学第一学期期末监测模拟试题含解析_第4页
2024届广西南宁市三十三中学高二数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广西南宁市三十三中学高二数学第一学期期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆,圆相交于P,Q两点,其中,分别为圆和圆的圆心.则四边形的面积为()A.3 B.4C.6 D.2.若(为虚数单位),则复数在复平面内的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限3.下列直线中,倾斜角为45°的是()A. B.C. D.4.杨辉三角是二项式系数在三角形中的一种几何排列,在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中就有出现.在欧洲,帕斯卡(1623~1662)在1654年发现这一规律,比杨辉要迟了393年.如图所示,在“杨辉三角”中,从1开始箭头所指的数组成一个锯齿形数列:1,2,3,3,6,4,10,5,…,则在该数列中,第37项是A.153 B.171C.190 D.2105.下列命题为真命题的是()A.若,则 B.若,则C.若,则 D.若,则6.椭圆的焦点坐标为()A. B.C. D.7.若直线与互相平行,且过点,则直线的方程为()A. B.C. D.8.设函数,则()A.1 B.5C. D.09.命题“存在,使得”的否定为()A.存在, B.对任意,C对任意, D.对任意,10.某地为响应总书记关于生态文明建设的号召,大力开展“青山绿水”工程,造福于民,拟对该地某湖泊进行治理,在治理前,需测量该湖泊的相关数据.如图所示,测得角∠A=23°,∠C=120°,米,则A,B间的直线距离约为(参考数据)()A.60米 B.120米C.150米 D.300米11.直三棱柱ABC-A1B1C1中,△ABC为等边三角形,AA1=AB,M是A1C1的中点,则AM与平面所成角的正弦值为()A. B.C. D.12.如果命题为真命题,为假命题,那么()A.命题,都是真命题 B.命题,都是假命题C.命题,至少有一个是真命题 D.命题,只有一个是真命题二、填空题:本题共4小题,每小题5分,共20分。13.双曲线的离心率为__________14.圆与x轴相切于点A.点B在圆C上运动,则AB的中点M的轨迹方程为______(当点B运动到与A重合时,规定点M与点A重合);点N是直线上一点,则的最小值为______15.阿波罗尼斯与阿基米德、欧几里得被称为亚历山大时期的数学三巨匠.“阿波罗尼斯圆”是他的代表成果之一:平面上动点P到两定点A,B的距离之比满足(且,t为常数),则点的轨迹为圆.已知在平面直角坐标系中,,,动点P满足,则P点的轨迹为圆,该圆方程为_________;过点的直线交圆于两点,且,则_________16.若圆平分圆的周长,则直线被圆所截得的弦长为____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在①,②这两个条件中任选一个,补充在下面的问题中,并作答.设数列的前项和为,且__________.(1)求数列的通项公式;(2)若,求数列的前项和.18.(12分)已知双曲线与有相同的渐近线,且经过点.(1)求双曲线的方程;(2)已知直线与双曲线交于不同的两点,且线段的中点在圆上,求实数的值.19.(12分)年世界人工智能大会已于年月在上海徐汇西岸举行,某高校的志愿者服务小组受大会展示项目的启发,会后决定开发一款“猫捉老鼠”的游戏.如图所示,、两个信号源相距米,是的中点,过点的直线与直线的夹角为,机器猫在直线上运动,机器鼠的运动轨迹始终满足:接收到点的信号比接收到点的信号晚秒(注:信号每秒传播米).在时刻时,测得机器鼠距离点为米.(1)以为原点,直线为轴建立平面直角坐标系(如图),求时刻时机器鼠所在位置的坐标;(2)游戏设定:机器鼠在距离直线不超过米的区域运动时,有“被抓”的风险.如果机器鼠保持目前的运动轨迹不变,是否有“被抓”风险?20.(12分)已知两定点,,动点与两定点的斜率之积为(1)求动点M的轨迹方程;(2)设(1)中所求曲线为C,若斜率为的直线l过点,且与C交于P,Q两点.问:在x轴上是否存在一点T,使得对任意且,都有(其中,分别表示,的面积).若存在,请求出点T的坐标;若不存在,请说明理由21.(12分)在中,角A,B,C所对的边分别为a,b,c,且,,.(1)求角B;(2)求a,c的值及的面积.22.(10分)某港口船舶停靠的方案是先到先停,且每次只能停靠一艘船.(1)若甲乙两艘船同时到达港口,双方约定各派一名代表猜拳:从1,2,3,4,5中各随机选一个数,若两数之和为奇数,则甲先停靠;若两数之和为偶数,则乙先停靠,这种方式对双方是否公平?请说明理由;(2)若甲、乙两船在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1h,乙船停泊时间为2h,求它们中的任意一艘都不需要等待码头空出的概率.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求得,由此求得四边形的面积.【详解】圆的圆心为,半径;圆的圆心为,所以,由、两式相减并化简得,即直线的方程为,到直线的距离为,所以,所以四边形的面积为.故选:A2、A【解析】根据复数运算法则求出z=a+bi形式,根据复数的几何意义即可求解.【详解】,z对应的点在第一象限.故选:A3、C【解析】由直线倾斜角得出直线斜率,再由直线方程求出直线斜率,即可求解.【详解】由直线倾斜角为45°,可知直线的斜率为,对于A,直线斜率为,对于B,直线无斜率,对于C,直线斜率,对于D,直线斜率,故选:C4、C【解析】根据“杨辉三角”找出数列1,2,3,3,6,4,10,5,…之间的关系即可。【详解】由题意可得从第3行起的每行第三个数:,所以第行的第三个数为在该数列中,第37项为第21行第三个数,所以该数列的第37项为故选:C【点睛】本题主要考查了归纳、推理的能力,属于中等题。5、D【解析】通过举反列即可得ABC错误,利用不等式性质可判断D【详解】A.当时,,但,故A错;B.当时,,故B错;C.当时,,但,故C错;D.若,则,D正确故选:D6、B【解析】根据方程可得,且焦点轴上,然后可得答案.【详解】由椭圆的方程可得,且焦点在轴上,所以,即,故焦点坐标为故选:B7、D【解析】由题意设直线的方程为,然后将点代入直线中,可求出的值,从而可得直线的方程【详解】因为直线与互相平行,所以设直线的方程为,因为直线过点,所以,得,所以直线的方程为,故选:D8、B【解析】由题意结合导数的运算可得,再由导数的概念即可得解.【详解】由题意,所以,所以原式等于.故选:B.9、D【解析】根据特称命题否定的方法求解,改变量词,否定结论.【详解】由题意可知命题“存在,使得”的否定为“对任意,”.故选:D.10、C【解析】应用正弦定理有,结合已知条件即可求A,B间的直线距离.【详解】由题设,,在△中,,即,所以米.故选:C11、B【解析】取的中点,以为原点,所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,即可根据线面角的向量公式求出【详解】如图所示,取的中点,以为原点,所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,不妨设,则,所以,平面的一个法向量为设AM与平面所成角为,向量与所成的角为,所以,即AM与平面所成角的正弦值为故选:B12、D【解析】由命题为真命题,可判断二者至少有一个为真命题,由为假命题,可判断二者至少有一个为假命题,由此可得答案.【详解】命题为真命题,说明二者至少有一个为真命题,为假命题,说明二者至少有一个为假命题,综合上述,可知命题,只有一个是真命题,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】∵双曲线的方程为∴,∴∴故答案为14、①.②.【解析】将点M的轨迹转化为以AC为直径的圆,再确定圆心及半径即可求解,将的最小值转化为点到圆心的距离再减去半径可求解.【详解】依题意得,,因为M为AB中点,所以,所以点M的轨迹是以AC为直径的圆,又AC中点为,,所以点M的轨迹方程为,圆心,设关于直线的对称点为,则有,解得,所以,所以由对称性可知的最小值为故答案为:,15、①.②.【解析】设,根据可得圆的方程,利用垂径定理可求.【详解】设,则,整理得到,即.因为,故为的中点,过圆心作的垂线,垂足为,则为的中点,则,故,解得,故答案为:,.16、6【解析】根据两圆的公共弦过圆的圆心即可获解【详解】两圆相减得公共弦所在的直线方程为由题知两圆的公共弦过圆的圆心,所以即,又,所以到直线的距离所以直线被圆所截得的弦长为故答案为:6三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案不唯一,具体见解析(2)答案不唯一,具体见解析【解析】(1)若选①:根据,利用数列通项与前n项和的关系求解;若选②:构造利用等比数列的定义求解;(2)根据(1)得到,再利用错位相减法求解.【小问1详解】解:若选①:,当时,,当时,满足上式,故若选②:易得于是数列是以为首项,2为公比的等比数列,【小问2详解】若选①:由(1)得,从而,,作差得,于是若选②由(1)得,从而,,作差得,于是18、(1)(2)【解析】(1)根据所求双曲线与有共同的渐近线可设出所求双曲线方程为,在根据点在双曲线上,代入双曲线方程中即可求解.(2)联立直线与双曲线的方程,得关于的一元二次方程,利用韦达定理得出的关系,再根据中点坐标公式求出线段的中点的坐标,代入圆方程即可求解.【小问1详解】由题意,设双曲线的方程为,则又因为双曲线过点,,所以双曲线的方程为:【小问2详解】由,消去整理,得,设,则因为直线与双曲线交于不同的两点,所以,解得.,所以则中点坐标为,代入圆得,解得.实数的值为19、(1);(2)没有.【解析】(1)设机器鼠位置为点,由题意可得,即,可得的轨迹为以、为焦点的双曲线的右支,分析取值,即得解双曲线的方程,由可得P点坐标.(2)转化机器鼠与直线最近的距离为与直线平行的直线与双曲线相切时,平行线间的距离,设的方程为,与双曲线联立,求出的值,再利用平行线间的距离公式,即得解【详解】(1)设机器鼠位置为点,、,由题意可得,即,可得的轨迹为以、为焦点的双曲线的右支,设其方程为:(,),则、、,则的轨迹方程为:(),时刻时,,即,可得机器鼠所在位置的坐标为;(2)由题意,直线,设直线的平行线的方程为,联立,可得:,,解得,又,∴,∴,即:与双曲线的右支相切,切点即为双曲线右支上距离最近的点,此时与的距离为,即机器鼠距离最小的距离为,则机器鼠保持目前运动轨迹不变,没有“被抓”的风险.20、(1)(2)存在;【解析】(1)设出点的坐标,根据,即可直接求出动点M的轨迹方程;(2)根据题意写出直线的方程,把直线的方程与曲线的方程联立,消元,写韦达;根据条件,同时结合三角形的面积公式可得出;从而结合韦达定理可求出点T的坐标.【小问1详解】设,由,得,即,所以动点M的轨迹方程为.【小问2详解】设PT与RT夹角为,QT与RT夹角为,因为,所以,即,所以,设,,,直线l的方程为,因为,所以,即,所以,即①,由,得,所以,代入①式,得,解得,所以存在点,使得对任意且,都有.21、(1)(2),,【解析】(1)利

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论