版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届甘肃武威市凉州区高二上数学期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点为双曲线的左顶点,点和点在双曲线的右分支上,是等边三角形,则的面积是A. B.C. D.2.随着城市生活节奏的加快,网上订餐成为很多上班族的选择,下表是某外卖骑手某时间段订餐数量与送餐里程的统计数据表:订餐数/份122331送餐里程/里153045现已求得上表数据的回归方程中的值为1.5,则据此回归模型可以预测,订餐100份外卖骑手所行驶的路程约为()A.155里 B.145里C.147里 D.148里3.将函数图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,再将所得图象向右平移个单位长度,得到函数的图象,则()A. B.C. D.4.已知点,是椭圆:的左、右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,且,则的离心率为()A. B.C. D.5.已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为A. B.C. D.6.“”是“直线与互相垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.在四棱锥中,底面是正方形,为的中点,若,则()A. B.C. D.8.中国古代数学名著《算法统宗》中有这样一个问题:“今有俸粮三百零五石,令五等官(正一品、从一品、正二品、从二品、正三品)依品递差十三石分之,问,各若干?”其大意是,现有俸粮石,分给正一品、从一品、正二品、从二品、正三品这位官员,依照品级递减石分这些俸粮,问,每个人各分得多少俸粮?在这个问题中,正三品分得俸粮是()A.石 B.石C.石 D.石9.为了防控新冠病毒肺炎疫情,某市疾控中心检测人员对外来入市人员进行核酸检测,人员甲、乙均被检测.设命题为“甲核酸检测结果为阴性”,命题为“乙核酸检测结果为阴性”,则命题“至少有一位人员核酸检测结果不是阴性”可表示为()A. B.C. D.10.已知圆:和点,是圆上一点,线段的垂直平分线交于点,则点的轨迹方程是:()A. B.C. D.11.若抛物线y2=4x上一点P到x轴的距离为2,则点P到抛物线的焦点F的距离为()A.4 B.5C.6 D.712.下列语句中是命题的是A.周期函数的和是周期函数吗? B.C. D.梯形是不是平面图形呢?二、填空题:本题共4小题,每小题5分,共20分。13.点到直线的距离为_______.14.设,若,则S=________.15.在等差数列中,,公差,则_________16.已知为曲线:上一点,,,则的最小值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆,直线(1)求证:直线与圆恒有两个交点;(2)设直线与圆的两个交点为、,求的取值范围18.(12分)已知椭圆:的离心率为,且经过点.(1)求的方程;(2)设的右焦点为F,过F作两条互相垂直的直线AB和DE,其中A,B,D,E都在椭圆上,求的取值范围.19.(12分)已知数列满足且.(1)证明数列是等比数列;(2)设数列满足,,求数列的通项公式.20.(12分)已知数列的前项和为,,.(1)求的通项公式;(2)求数列的前项和;(3)若数列,,求前项和.21.(12分)已知椭圆焦距为,点在椭圆C上(1)求椭圆C的方程;(2)过点的直线与C交于M,N两点,点R是直线上任意一点,设直线的斜率分别为,若,求的方程22.(10分)已知等比数列的公比,,.(1)求数列的通项公式;(2)令,若,求满足条件的最大整数n.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设点在轴上方,由是等边三角形得直线斜率.又直线过点,故方程为.代入双曲线方程,得点的坐标为.同理可得,点的坐标为.故的面积为,选C.2、C【解析】由统计数据求样本中心,根据样本中心在回归直线上求得,即可得回归方程,进而估计时的y值即可.【详解】由题意:,,则,可得,故,当时,.故选:C3、A【解析】根据三角函数图象的变换,由逆向变换即可求解.【详解】由已知的函数逆向变换,第一步,向左平移个单位长度,得到的图象;第二步,图象上所有点的横坐标缩短到原来的,纵坐标不变,得到的图象,即的图象.故.故选:A4、D【解析】设,先求出点,得,化简即得解【详解】由题意可知椭圆的焦点在轴上,如图所示,设,则,∵为等腰三角形,且,∴.过作垂直轴于点,则,∴,,即点.∵点在过点且斜率为的直线上,∴,解得,∴.故选:D【点睛】方法点睛:求椭圆的离心率常用的方法有:(1)公式法(求出椭圆的代入离心率的公式即得解);(2)方程法(通过已知找到关于离心率的方程解方程即得解).5、B【解析】由已知可设,则,得,在中求得,再在中,由余弦定理得,从而可求解.【详解】法一:如图,由已知可设,则,由椭圆的定义有.在中,由余弦定理推论得.在中,由余弦定理得,解得所求椭圆方程为,故选B法二:由已知可设,则,由椭圆的定义有.在和中,由余弦定理得,又互补,,两式消去,得,解得.所求椭圆方程为,故选B【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养6、A【解析】根据两直线垂直的性质求出,再结合充分条件和必要条件的定义即可得出答案.【详解】解:因为直线与互相垂直,所以,解得或,所以“”是“直线与互相垂直”的充分不必要条件.故选:A.7、C【解析】由为的中点,根据向量的运算法则,可得,即可求解.【详解】由底面是正方形,E为的中点,且,根据向量的运算法则,可得.故选:C.8、D【解析】令位官员(正一品、从一品、正二品、从二品、正三品)所分得的俸粮数是公差为数列,利用等差数列的前n项和求,进而求出正三品即可.【详解】正一品、从一品、正二品、从二品、正三品这位官员所分得的俸粮数记为数列,由题意,是以为公差的等差数列,且,解得.故正三品分得俸粮数量为(石).故选:D.9、D【解析】表示出和,直接判断即可.【详解】命题为“甲核酸检测结果为阴性”,则命题为“甲核酸检测结果不是阴性”;命题为“乙核酸检测结果为阴性”,则命题为“乙核酸检测结果不是阴性”.故命题“至少有一位人员核酸检测结果不是阴性”可表示为.故选D.10、B【解析】先由在线段的垂直平分线上得出,再由题意得出,进而由椭圆定义可求出点的轨迹方程.【详解】如图,因为在线段的垂直平分线上,所以,又点在圆上,所以,因此,点在以、为焦点的椭圆上.其中,,则.从而点的轨迹方程是.故选:B.11、A【解析】根据抛物线y2=4x上一点P到x轴的距离为2,得到点P(3,±2),然后利用抛物线的定义求解.【详解】由题意,知抛物线y2=4x的准线方程为x=-1,∵抛物线y2=4x上一点P到x轴的距离为2,则P(3,±2),∴点P到抛物线的准线的距离为3+1=4,∴点P到抛物线的焦点F的距离为4.故选:A.12、B【解析】命题是能判断真假的语句,疑问句不是命题,易知为命题,故选B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】应用点线距离公式求点线距离.【详解】由题设,点到距离为.故答案为:14、1007【解析】可证f(x)+f(1﹣x)=1,由倒序相加法可得所求为1007对的组合,即1007个1,可得答案【详解】解:∵函数f(x),∴f(x)+f(1﹣x)1故可得S=f()+f()…+f()=1007×1=1007,故答案为:1007点睛】本题考查倒序相加法求和,推断出f(x)+f(1﹣x)=1是解题的关键.15、15【解析】由等差数列通项公式直接可得.【详解】.故答案为:1516、【解析】曲线是抛物线的右半部分,是抛物线的焦点,作出抛物线的准线,把转化为到准线的距离,则到准线的距离为所求距离和的最小值【详解】易知曲线是抛物线的右半部分,如图,因为抛物线的准线方程为,是抛物线的焦点,所以等于到直线的距离.过作该直线的垂线,垂足为,则的最小值为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)根据直线的方程可得直线经过定点,而点到圆心的距离小于半径,故点在圆的内部,由此即可证明结果(2)由圆的性质可知,当过圆心时,取最大值,当和过的直径垂直时,取最小值,由此即可求出结果.【小问1详解】证明:由于直线,即令,解得,所以恒过点,所以,所以点在圆内,所以直线与圆恒有两个交点;【小问2详解】解:当过圆心时,取最大值,即圆的直径,由圆的半径,所以的最大值为;当和过的直径垂直时,取最小值,此时圆心到的距离,所以,故的最小值为综上,的取值范围.18、(1)(2)【解析】(1)根据椭圆的离心率为,及经过点建立等式可求解;(2)分斜率存在与不存在两种情况进行讨论,当斜率存在时,计算与后再求范围即可.【小问1详解】由题意知的离心率为,整理得,又因为经过点,所以,解得,所以,因此,的方程为.小问2详解】由已知可得,当直线AB或DE有一条的斜率不存在时,可得,或,,此时有或.当AB和DE的斜率都存在时且不为0时,设直线:,直线:,,,,由得,所以,,所以,用替换可得.所以,综上所述,的取值范围为.19、(1)证明见解析;(2).【解析】(1)根据题意可得,根据等比数列的定义,即可得证;(2)由(1)可得,可得,利用累加法即可求得数列的通项公式.【详解】(1)因为,所以,即,所以是首项为1公比为3的等比数列(2)由(1)可知,所以因为,所以……,,各式相加得:,又,所以,又当n=1时,满足上式,所以20、(1)(2)(3)【解析】(1)由可求得的值,令,由可得,两式作差可推导出数列为等比数列,确定该数列的首项和公比,即可求得数列的通项公式;(2)求得,利用错位相减法可求得;(3)利用奇偶分组法,结合等差数列和等比数列的求和公式可求得.【小问1详解】解:当时,,可得,当时,由可得,上述两个等式作差得,可得,所以,数列是以为首项,以为公比的等比数列,故.【小问2详解】解:,所以,,所以,,上述两个等式作差得,因此,.【小问3详解】解:由题意可得,,所以,.21、(1);(2).【解析】(1)由焦距为解出,再把点代入椭圆方程中,即可解出答案.(2)根据题意求出当直线与轴重合时,由求出值,即求出的方程为.故只需证:当直线与轴不重合时,上任意一点均使,设出直线方程与椭圆进行联立,化简得证,即可得到答案.【小问1详解】.由于点在椭圆C上,则故椭圆C的方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 插图在小学课本的互动教学作用
- 个性化彩绘协议规范文档2024年版
- 教育机构客户服务流程的个性化改造
- 数字化时代的学习心理变革
- 二零二五年度铲车租赁与道路施工许可证合同3篇
- 教育视域下的学生心理健康挑战与对策分析
- 网络安全教育构建孩子信息安全防线
- 漯河2024年河南漯河市立医院(漯河市骨科医院漯河医专二附院)招聘高层次人才笔试历年参考题库附带答案详解
- 漯河2024年河南漯河市中医院招聘高层次人才5人笔试历年参考题库附带答案详解
- 湖北2025年湖北武汉理工大学专职辅导员招聘笔试历年参考题库附带答案详解
- 电工中级工练习题库(含参考答案)
- 学校帮扶工作计划
- 期末综合试卷(试题)2024-2025学年人教版数学五年级上册(含答案)
- UL2034标准中文版-2017一氧化碳报警器UL中文版标准
- 感恩的心培训资料
- 《精密板料矫平机 第3部分:精度》
- (完整版)水利部考试历年真题-水利基础知识试题集
- 浙江省杭州市2024-2025学年高三上学期一模英语试题(含解析无听力原文及音频)
- 2024年广东省公务员考试《行测》真题及答案解析
- 个人顶账房合同范例
- 安徽省淮南四中2025届高二上数学期末统考模拟试题含解析
评论
0/150
提交评论