电力电子系统建模及控制1-DC-DC变换器的动态模型_第1页
电力电子系统建模及控制1-DC-DC变换器的动态模型_第2页
电力电子系统建模及控制1-DC-DC变换器的动态模型_第3页
电力电子系统建模及控制1-DC-DC变换器的动态模型_第4页
电力电子系统建模及控制1-DC-DC变换器的动态模型_第5页
已阅读5页,还剩100页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

20世纪人类最伟大的20项科技成果

1.Electrification

2.Automobile

3.Airplane

4.WaterSupplyandDistribution

5.Electronics

6.RadioandTelevision

7.AgriculturalMechanization

8.Computers

9.Telephone

10.AirConditioning

andRefrigeration11.Highways

12.Spacecraft

13.Internet

14.Imaging

15.HouseholdAppliances

16.HealthTechnologies

17.Petroleumand

PetrochemicalTechnologies

18.LaserandFiberOptics

19.NuclearTechnologies

20.High-performanceMaterials受到电力电子技术的深刻影响电力电子装置的分类(有功)电源:直流开关电源、逆变电源、不停电电源(UPS)、直流输电装置等无功电源:静止无功补偿装置(SVC)、静止无功发生装置(SVG)、有源电力滤波器、动态电压恢复装置(DVR)等传动装置:直流调速装置、各类电机的变频调速装置等。电力电子装置的应用范围十分广泛,粗略可分为:(有功)电源无功电源传动装置电力电子技术发展两条主线半导体功率器件的发展

从结型控制器件(晶闸管、功率GTR、GTO)到场控器件(MOSFET、IGBT、IGCT)的发展历程高频化、低功耗、场控化成为功率器件发展主要特征功率器件发展历程也是向理想电子开关逐步逼近的过程功率变换电路的发展:电路拓扑结构逐渐走向稳定器件和电路的日趋成熟,注意力转向电力电子装置的整体性能的优化问题,电力电子系统的问题比以往更加受到重视。电力电子系统问题控制系统动态性能、稳态的性能并联系统的控制问题:均流、输出纹波抑制技术组合或接连系统的分析与控制功率管理控制(效率的提高技术)热分析和设计电力电子装置对电能质量影响和改进电磁兼容分析和设计SOC,SOP功率集成系统级功率集成:硬件电路的标准化+网络控制技术电力电子装置的技术指标电力电子装置需要满足静态指标和动态指标要求。

如直流开关电源指标:电源调整率、负载调整率、输出电压的精度、纹波、动态性能、变换效率、功率密度、并联模块的不均流度、功率因数和EMC。

影响技术指标因素:功率电路设计,系统控制的设计

功率电路设计:电路拓扑、磁设计、热设计、功率元件驱动功率电路设计影响的指标:变换效率、功率密度、纹波等技术

系统控制的设计影响的指标:电源调整率、负载调整率、输出电压的精度、动态性能、并联模块的不均流度等指标功率电路设计与系统控制的设计就如汽车的左、右轮,同等重要

通讯基础电源的系统为了达到所需的静态和动态指标,一般需要引入反馈控制。电力电子系统中包含功率开关器件或二极管等非线性元件,是非线性系统AC/DCDC/DCObjective:maintainv(t)equaltoanaccurate,andconstantvalueV.Therearedisturbancesdueto•inputvg(t)•loadRThereareuncertaintiesincomponentvaluesDC/DCconvertersystem

ObjectiveofmodelingtheconverterDesignacompensatorfortheconvertersystemtohavegoodcharacteristicsinbothstaticanddynamicsStabilityanalysisBuildingasimulationmodeltoevaluateaconvertersystemHowtomodeltheconverterorinverteristhegoalofthiscourse?ModelingofCCMDC/DCconverterModelingofDCMDC/DCconverterModelingofDC/DCconverterwithcurrentpeakcontrolCompensationdesignforDC/DCconvertersystemModelingofsinglephaseinverterModelingofThreephaseinverterorconverterContentsChapter1ModelingofCCMDC/DCconverterDeveloptoolsformodelingofCCMDC/DCconvertersystemsHowdoACvariationsinvg(t),R,ord(t)affecttheoutputvoltagev(t)?Whatarethesmall-signaltransferfunctionsoftheconverter?PurposeofthischapterCapturedominantbehaviorandignoreinsignificantphenomenaSimplifiedmodelyieldsphysicalinsight,allowingengineertodesignsystemtooperateinspecifiedmannerModelingDefinition:describingdynamicphysicalbehaviorbymathematicalmeansFormodeling,simplificationsareusedduetofollowingreasons:DC/DCconvertersystem(staticstate)ttSwitchfrequencyDandDm

areconstants,|Dm

|<<Dfrequency

ismuchsmallerthantheconverterswitchingfrequencyDC/DCconvertersystem(dynamicstate)SupposeinterferenceisintroducedasfollowsttContainsfrequencycomponentsat:•Modulationfrequencyanditsharmonics•Switchingfrequencyanditsharmonics•Sidebandsofswitchingfrequency|Dm|<<DThenharmonicsofmodulationfrequencyisverysmallSwitchingharmonicsandsidebandscomponentsarerelativelysmall.OutputvoltagespectrumwithsinusoidalmodulationofdutycycleInput-outputrelationshipDC/DCconverterInput-outputrelationshipconsideringACcomponentsDC/DCconverterForACcomponents,ithasthepropertyofthelinearsystemApproach:•RemoveswitchingharmonicsbyaveragingthewaveformoveroneswitchingperiodApproachofconvertermodelingPredicthowlow-frequencyvariationsindutycycleinducelowfrequencyvariationsintheconvertervoltagesandcurrents•Ignoretheswitchingripple•IgnorecomplicatedswitchingharmonicsandsidebandsAveragingtoremoveswitchingrippleAverageoveroneswitchingperiodtoremoveswitchingrippletExplanationDefinetThenh(t)h(t)isalowpassfilterFiltercharacteristicsh(t)tAmplitudefreq.characteristicsH(t)islowpassfilterwithbandwidthlessthanfS1Functionofaveragingoperator1Inductorequation:DividebyLandintegrateoveroneswitchingperiod:Left-handsideisthechangeininductorcurrent.Right-handsidecanbeexpressedasaverageinductorvoltagemultipliedbyTs/Lasfollows:ThenetchangeininductorcurrentoveroneswitchingperiodisequaltotheperiodTsmultipliedbytheaverageslopeEulerformulaHenceWithsimilarderivationwecangetEquationsforinductorandcapacitorAfteraveragingoperationtheinductanceequationandcapacitanceequationstillexistCCMBuck-boostconverterexampleStage1,(0,DTs)Stage2,(DTs,Ts)Stage1:Switchinposition1Inductorvoltageandcapacitorcurrentare:Stage2:Switchinposition2Inductorvoltageandcapacitorcurrentare:AveragetheinductorvoltagegAveragecapacitorcurrentAccordingtoInsertAveragingstateequationBuck-boostinputcurrentwaveformisAveragevalue:AveraginginputcurrentConverteraverageequationsDescribelow-frequencydynamicsoftheconverter•Ignoretheswitchingripple•IgnorecomplicatedswitchingharmonicsandsidebandsLowfrequency?1PerturbationandlinearizationConverteraveragedequations:Nonlinearbecauseofmultiplicationofthecontrolvariabled(t)withstatevariablessuchasi(t)andv(t).Constructsmall-signalmodel:LinearizeaboutquiescentoperatingpointIftheconverterisdrivenwithsomesteady-state,orquiescentinputsreachthequiescentvaluesI,V,andIg,givenbythesteady-stateanalysisasAftertransientshavesubsided,theinductorcurrent,capacitorvoltage,andinputcurrentIntroducetheperturbationtoinputvoltageanddutycyclePerturbationInresponse,theconverterdependentvoltagesandcurrentswillalsobeperturbedInductorequationafterperturbation:PerturbationofinductorequationNotethatd’(t)isgivenbyMultiplyoutandcollectterms:PerturbedinductorequationTheright-handsidecontainsthreeterms:•DCterms•First-orderacterms,alinearfunctionoftheacvariations•Second-orderacterms,nonlinearSinceI

isaconstant(dc)term,itsderivativeiszeroSimplificationThe2ndorderactermismuchsmallerthanthe1stordertermsThe2ndorder

termisignoredDCtermismovedawayduetoDCequationAfterneglectingthe2ndordertermandusingDCequation,wegetLinearizedinductorequationLinearequationwhichdescribessmallsignalacvariationsQuiescentvaluesD,D’,V,andVgaretreatedasconstantsAfterperturbationCapacitorequationAfterneglectingthe2ndordertermandusingDCequation,wegetsmall-signallinearizedcapacitorequation.BeforeperturbationSmall-signallinearmodelofCCMBuck-boostconverterOutputequationStateequationConstructequivalentcircuitcorrespondingtothesmallsignallinearequationsInductorloopequation方块:受控源圆:独立电源CapacitornodeequationInputportnodeequationCompleteequivalentcircuitEquivalentcircuitofotherconvertersMidsummaryAverageoveroneswitchingperiodtoremoveswitchingripple1tAftertheaverageoperationtheinductanceequationandcapacitanceequationstillexistMidsummaryBuck-boostConverteraveragedequationsDescribelow-frequencydynamicsoftheconverter•Ignoretheswitchingripple•IgnorecomplicatedswitchingharmonicsandsidebandsLowfrequency?Midsummary1Small-signallinearmodelofCCMBuck-boostconverterMidsummaryPerturbationandlinearizingEquivalentcircuitMidsummaryState-spaceaveragedmodelGiven:aPWMconverter,operatingincontinuousconductionmode,withtwosubintervalsduringeachswitchingperiod.Duringsubinterval1,whentheswitchesareinposition1,theconverterreducestoalinearcircuitdescribedbyDuringsubinterval2,whentheswitchesareinposition2,theconverterreducestoanotherlinearcircuitdescribedbySlopeofthestatevectorduringfirstsubintervalDuringsubinterval1,wehaveSotheelementsofx(t)changewiththeslopeSmallrippleassumption:theelementsofx(t)andu(t)donotchangesignificantlyduringthesubinterval.HencetheslopesareessentiallyconstantandareequaltoNetchangeinstatevectoroverfirstsubinterval:NetchangeofthestatevectorduringfirstsubintervalStatevectornowchangeswiththeessentiallyconstantslopeThevalueofthestatevectorattheendofthesecondsubintervalisSlopeofthestatevectorduringthe2ndsubintervalNetchangeinstatevectoroveroneswitchingperiodEliminatex(dTs),toexpressx(Ts)directlyintermsofx(0):Collectterms:derivativeofstatevectorUseEulerapproximation:Weobtain:Low-frequencycomponentsofoutputvectorRemoveswitchingharmonicsbyaveragingoveroneswitchingperiod:Collectterms:Averagedstateequations:quiescentoperatingpointTheaveraged(nonlinear)stateequations:Hence,theconverterquiescentoperatingpointisthesolutionof0=AX+BUY=CX+EUwhereA=DA1+D'A2B=DB1+D'B2C=DC1+D'C2E=DE1+D'E2X=equilibrium(dc)statevectorU=equilibrium(dc)inputvectorY=equilibrium(dc)outputvectorD=equilibrium(dc)dutycycleTheconverteroperatesinequilibriumwhenthederivativesof<x(t)>Tsiszero.

Equilibrium(dc)state-spaceaveragedmodel0=AX+BUY=CX+EU

A=DA1+D'A2B=DB1+D'B2C=DC1+D'C2E=DE1+D'E2SolutionforXandY:whereAveragedstatespaceequationsLargesignaldynamicalmodelNonlinearmodelPerturbationandlinearizationSubstituteintoaveragedstateequations:PerturbationandlinearizationLinearizedsmall-signalstateequationsUseDCequations:0=AX+BU,Y=CX+EUThesecond-order(nonlinear)termsaresmallerState-spaceaveragedsmallsignalACmodelCircuitAveragingandAveragedSwitchModelingAbovemethodsaremathematicalintensiveRatherthandoingmathematicaloperations,isitpossibletoderivethemodelbyperformingtheconvertercircuittransformation.SeparateswitchnetworkfromremainderofconverternonlinearlinearLinearsubcircuitNonlinearswitchnetworkBoostconverterexampleOriginalcircuitisdivideintolinearsubcircuitandswitchnetworkSimpledc-dcconvertercase,theswitchnetworkistwoterminalnetworkTheswitchnetworkterminalvariablesareterminalvoltagesandcurrents:v1(t),i1(t),v2(t),andi2(t).Twooftheseterminalvraibalesaretakenasindependentinputstotheswitchnetwork,andtheremainingtwovariablesarethenviewedasdependentoutputsoftheswitchnetwork.Definitionoftheswitchnetworkterminalvariablesisnotunique.DiscussionTwowaystodefinetheswitchnetworkBoostconverterexampleSincei1(t)andv2(t)coincidewiththeconverterinductorcurrentandoutputvoltageandarestatevariables,itisconvenienttodefinethesewaveformsastheindependentinputstotheswitchnetwork.v1(t)andi2(t)areselectedasdependentoutputs.+__+Obtainingatime-invariantnetwork:ModelingtheterminalbehavioroftheswitchnetworkReplacetheswitchnetworkwithdependentsources,whichrepresentsthedependentoutputoftheswitchnetworkBoostconverterexampleDefinitionofdependentsourcewaveformsThewaveformsofthedependentsourcesareidenticaltotheactualterminalwaveformsoftheswitchnetwork.ThedependentsourcenetworkisequivalenttoswitchnetworkThecircuitaveragingstepNowaverageallwaveformsoveroneswitchingperiod:Naturaltimeconstantsoftheconverteraremuchlargerthantheswitchingperiodduetolow-passfilter.AveragingovertheswitchingperiodTswillnotsignificantlyalteringthesystemresponse,whichremovestheswitchingharmonics,whilepreservingthelow-frequencycomponentsofthewaveforms.Inpractice,theonlyoperationneededforthisstepistoaveragetheswitchnetwork.Averagingstep:boostconverterexampleComputeaveragevaluesofdependentsourcesAveragethewaveformsofthedependentsourcesPerturbThecircuitbecomes:linearizeLinearizedcircuit-averagedmodelModelthetwoterminalswitchnetworkwithequivalentvoltageandcurrentsourcesAverageconverterwaveformsoveroneswitchingperiod,toremovetheswitchingharmonics.Actuallyaveragethewaveformsofthedependentsources.Perturbandlinearizethedependentsourcesnetwork,toobtainasmall-signalequivalentcircuitSummary:CircuitaveragingmethodAveragedswitchmodeling:CCMCircuitaveragingoftheboostconverter:inessence,theswitchnetworkwasreplacedwithaneffectiveidealtransformerandgenerators:BasicfunctionsperformedbyswitchnetworkFortheboostexample,wecanconcludethattheswitchnetworkperformstwobasicfunctions:•Transformationofdcandsmall-signalacvoltageandcurrentlevels,accordingtotheD’:1conversionratio•IntroductionofacvoltageandcurrentsourcescontrolledbydutycyclevariationsCircuitaveragingmodifiesonlytheswitchnetwork.Toobtainasmallsignalconvertermodel,weneedonlyreplacetheswitchnetworkwithitsaveragedmodel.Suchaprocedureiscalledaveragedswitchmodeling.Averagedswitchmodeling:Procedure1.Defineaswitchnetworkanditsterminalwaveforms.Forasimpletransistor-diodeswitchnetworkasinthebuck,boost,etc.,therearetwoportsandfourterminalvariabls:v1,i1,v2,i2.Theswitchnetworkalsocontainsacontrolinputd.2.Fortwoportstherearefourterminalquantities:v1,i1,v2,i2.Twoterminalquantitiesareselectedasindependentvariablesandtheothersasdependentvariables.3.Toderiveanaveragedswitchmodel,expressingtheaveragevaluesofdependentvariableswithindependentvariables.4.PerturbationandlinearizeBuckconverterCCMswitchcellResultingaveragedswitchmodel:CCMbuckconverterReplacementofswitchnetworkbydependentsourcesThreebasicswitchnetworksandsmall-signalacmodelsAllPWMCCMdc-dcconvertersperformthesamebasicfunctions:•Transformationofvoltageandcurrentlevels•Low-passfilteringofwaveforms•ControlofwaveformsbyvariationofdutycycleCanonicalmodel:•Astandardformofequivalentcircuitmodel,whichrepresentstheabovephysicalproperties•PluginparametervaluesforagivenspecificconverterThecanonicalcircuitmodelCanonicalcircuitmodelLine-to-outputtransferfunctionControl-to-outputtransferfunctionExample:manipulationofthebuck-boostconvertermodelintocanonicalformSmall-signalacmodelofthebuck-boostconverter•Moveindependentsourcestoinputsideoftransformers•Moveinductortooutputsideofthetransformers•CombinetwotransformersCanonicalcircuitmodelStep1Pushvoltagesourcethrough1:DtransformerMovecurrentsourcethroughD’:1transformerStep2Breakgroundconnectionofcurrentsource,andconnecttonodeAinstead.ConnectanidenticalcurrentsourcefromnodeAtoground,sothatthenodeequationsareunchanged.Step3Theparallel-connectedcurrentsourceandinductorcannowbereplacedbyaThevenin-equivalentnetwork:Step4Nowpushcurrentsourcethrough1:Dtransformer.Pushcurrentsourcepastvoltagesource,againby:Breakinggroundconnectionofcurrentsource,andconnectingtonodeBinstead.Notethattheresultingparallel-connectedvoltageandcurrentsourcesareequivalenttoasinglevoltagesource.Step5:finalresultPushvoltagesourcethrough1:Dtransformer,andcombinewithexistinginput-sidetransformer.Combineseries-connectedtransformers.Coefficientofcontrol-inputvoltagegeneratorVoltagesourcecoefficientis:Simplification,usingdcrelations,leadstoPushingthesourcespasttheinductorcausesthegeneratortobecomefrequency-dependent.CanonicalcircuitparametersforconvertersModelingth

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论