2023-2024学年上海市曹杨第二中学高二数学第一学期期末复习检测模拟试题含解析_第1页
2023-2024学年上海市曹杨第二中学高二数学第一学期期末复习检测模拟试题含解析_第2页
2023-2024学年上海市曹杨第二中学高二数学第一学期期末复习检测模拟试题含解析_第3页
2023-2024学年上海市曹杨第二中学高二数学第一学期期末复习检测模拟试题含解析_第4页
2023-2024学年上海市曹杨第二中学高二数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年上海市曹杨第二中学高二数学第一学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线的准线方程是,则实数的值为()A. B.C.8 D.2.命题:,否定是()A., B.,C., D.,3.在平面区域内随机投入一点P,则点P的坐标满足不等式的概率是()A. B.C. D.4.过点且与椭圆有相同焦点的双曲线方程为()A B.C. D.5.如果双曲线的一条渐近线方程为,且经过点,则双曲线的标准方程是()A. B.C. D.6.酒驾是严重危害交通安全的违法行为.根据国家有关规定:100血液中酒精含量在20~80之间为酒后驾车,80及以上为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1.2,且在停止喝酒以后,他血液中的酒精含量会以每小时20%的速度减少,若他想要在不违法的情况下驾驶汽车,则至少需经过的小时数约为()(参考数据:,)A.6 B.7C.8 D.97.已知函数(为自然对数的底数),若的零点为,极值点为,则()A. B.0C.1 D.28.甲,乙、丙、丁、戊共5人随机地排成一行,则甲、乙相邻,丙、丁不相邻的概率为()A. B.C. D.9.某社区医院为了了解社区老人与儿童每月患感冒的人数y(人)与月平均气温x(℃)之间的关系,随机统计了某4个月的患病(感冒)人数与当月平均气温,其数据如下表:月平均气温x(℃)171382月患病y(人)24334055由表中数据算出线性回归方程中的,气象部门预测下个月的平均气温约为9℃,据此估计该社区下个月老年人与儿童患病人数约为()A.38 B.40C.46 D.5810.已知点,,直线与线段相交,则实数的取值范围是()A.或 B.或C. D.11.已知两直线与,则与间的距离为()A. B.C. D.12.函数在上单调递增,则k的取值范围是()A B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.等差数列前3项的和为30,前6项的和为100,则它的前9项的和为______.14.已知、是空间内两个单位向量,且,如果空间向量满足,且,,则对于任意的实数、,的最小值为______15.已知在时有极值0,则的值为____16.(建三江)函数在处取得极小值,则=___三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在棱长为4的正方体中,点分别在线段上,点在线段延长线上,,,连接交线段于点.(1)求证平面;(2)求异面直线所成角的余弦值.18.(12分)已知等差数列的前项和为,,且.(1)求数列的通项公式;(2)设数列的前项和为,证明:.19.(12分)已知直线与双曲线交于,两点,为坐标原点(1)当时,求线段的长;(2)若以为直径的圆经过坐标原点,求的值20.(12分)经观测,某公路段在某时段内的车流量(千辆/小时)与汽车的平均速度(千米/小时)之间有函数关系:(1)在该时段内,当汽车的平均速度为多少时车流量最大?最大车流量为多少?(精确到)(2)为保证在该时段内车流量至少为千辆/小时,则汽车的平均速度应控制在什么范围内?21.(12分)的内角A,B,C的对边分别为a,b,c.已知.(1)求B.(2)___________,若问题中的三角形存在,试求出;若问题中的三角形不存在,请说明理由.在①,②,③这三个条件中任选一个,补充在横线上.注:如果选择多个条件分别解答,按第一个解答计分.22.(10分)已知直线l过定点(1)若直线l与直线垂直,求直线l的方程;(2)若直线l在两坐标轴上的截距相等,求直线l的方程

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】化简方程为,求得抛物线的准线方程,列出方程,即可求解.【详解】由抛物线,可得,所以,所以抛物线的准线方程为,因为抛物线的准线方程为,所以,解得.故选:B.2、D【解析】根据给定条件利用全称量词命题的否定是存在量词命题直接写出作答.【详解】命题:,是全称量词命题,其否定是存在量词命题,所以命题:,的否定是:,.故选:D3、A【解析】根据题意作出图形,进而根据几何概型求概率的方法求得答案.【详解】根据题意作出示意图,如图所示:于,所求概率.故选:A.4、D【解析】设双曲线的方程为,再代点解方程即得解.【详解】解:由得,所以椭圆的焦点为.设双曲线的方程为,因为双曲线过点,所以.所以双曲线的方程为.故选:D5、D【解析】根据渐近线方程设出双曲线方程,然后将点代入,进而求得答案.【详解】因为双曲线的一条渐近线方程为,所以设双曲线方程为,将代入得:,即双曲线方程为.故选:D.6、C【解析】根据题意列出不等式,利用指对数幂的互化和对数的运算公式即可解出不等式.【详解】设该驾驶员至少需经过x个小时才能驾驶汽车,则,所以,则,所以该驾驶员至少需经过约8个小时才能驾驶汽车.故选:C7、C【解析】令可求得其零点,即的值,再利用导数可求得其极值点,即的值,从而可得答案【详解】解:,当时,,即,解得;当时,恒成立,的零点为又当时,为增函数,故在,上无极值点;当时,,,当时,,当时,,时,取到极小值,即的极值点,故选:C【点睛】本题考查利用导数研究函数的极值,考查函数的零点,考查分段函数的应用,突出分析运算能力的考查,属于中档题8、A【解析】先求出所有的基本事件,再求出甲、乙相邻,丙、丁不相邻的基本事件,根据古典概型的概率公式求解即可【详解】甲,乙、丙、丁、戊共5人随机地排成一行有种方法,甲、乙相邻,丙、丁不相邻的排法为先将甲、乙捆绑在一起,再与戊进行排列,然后丙、丁从3个空中选2个空插入,则共有种方法,所以甲、乙相邻,丙、丁不相邻的概率为,故选:A9、B【解析】由表格数据求样本中心,根据线性回归方程过样本中心点,将点代入方程求参数,写出回归方程,进而估计下个月老年人与儿童患病人数.【详解】由表格得为,由回归方程中的,∴,解得,即,当时,.故选:B.10、B【解析】由可求出直线过定点,作出图象,求出和,数形结合可得或,即可求解.【详解】由可得:,由可得,所以直线:过定点,作出图象如图所示:,,若直线与线段相交,则或,所以实数的取值范围是或,故选:B11、B【解析】把直线的方程化简,再利用平行线间距离公式直接计算得解.【详解】直线的方程化为:,显然,,所以与间的距离为.故选:B12、A【解析】对函数求导,由于函数在给定区间上单调递增,故恒成立.【详解】由题意可得,,,,.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、210【解析】依题意,、、成等差数列,从而可求得答案【详解】∵等差数列{an}的前3项和为30,前6项和为100,即S3=30,S6=100,又S3、S6﹣S3、S9﹣S6成等差数列,∴2(S6﹣S3)=(S9﹣S6)+S3,即140=S9﹣100+30,解得S9=210.故答案:210【点睛】本题考查等差数列的性质,熟练利用、、成等差数列是关键,属于中档题14、【解析】根据已知可设,,,根据已知条件求出、、的值,将向量用坐标加以表示,利用空间向量的模长公式可求得的最小值.【详解】因为、是空间内两个单位向量,且,所以,,因为,则,不妨设,,设,则,,解得,则,因为,可得,则,所以,,当且仅当时,即当时,等号成立,因此,对于任意的实数、,的最小值为.故答案为:.15、11【解析】由题知,且,所以,得或,①当时,,此时,,所以函数单调递增无极值,舍去②当时,,此时,是函数的极值点,符合题意,∴16、【解析】由,令,解得或,且时,;时,;时,,所以当时,函数取得极小值考点:导数在函数中的应用;极值的条件三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)由线面平行的判定定理证明;(2)建立空间直角坐标系,用空间向量法求异面直线所成的角【小问1详解】证明:且,由三角形相似可得,,,又,,又平面,平面平面;【小问2详解】解:以为坐标原点,分别以为轴建立空间坐标系,如图.则设异面直线所成角为,则18、(1);(2)证明见解析.【解析】(1)根据等差数列的性质及题干条件,可求得,代入公式,即可求得数列的通项公式;(2)由(1)可得,利用裂项相消求和法,即可求得,即可得证.【详解】解:(1)设数列的公差为,在中,令,得,即,故①.由得,所以②.由①②解得,.所以数列的通项公式为:.(2)由(1)可得,所以,故,所以.因为,所以.【点睛】数列求和的常见方法:(1)倒序相加法:如果一个数列的前n项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n项和可以用倒序相加法;(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n项和可以两两结合求解,则称之为并项求和,形如类型,可采用两项合并求解.19、(1)(2)【解析】(1)联立直线方程和双曲线方程,利用弦长公式可求弦长.(2)根据圆过原点可得,设,从而,联立直线方程和双曲线方程后利用韦达定理化简前者可得所求的参数的值.【小问1详解】当时,直线,设,由可得,此时,故.【小问2详解】设,因为以为直径的圆经过坐标原点,故,故,由可得,故且,故.而可化为即,因为,所以,解得,结合其范围可得.20、(1)当(千米/小时)时,车流量最大,最大值约为千辆/小时;(2)汽车的平均速度应控制在这个范围内(单位:千米/小时).【解析】(1)利用基本不等式可求得的最大值,及其对应的值,即可得出结论;(2)解不等式即可得解.【小问1详解】解:,(千辆/小时),当且仅当时,即当(千米/小时)时,车流量最大,最大值约为千辆/小时.【小问2详解】解:据题意有,即,即,解得,所以汽车的平均速度应控制在这个范围内(单位:千米/小时).21、(1)(2)答案见解析【解析】(1)由正弦定理及正弦的两角和公式可求解;(2)选择条件①,由正弦定理及辅助角公式可求解;选择条件②,由余弦定理及正切三角函数可求解;选择条件③,由余弦定理可求解【小问1详解】由,可得,则.∴,在中,,则,∵,∴,∴,∵,∴.【小问2详解】选择条件①,在中,,可得,∵,∴,∴,根据辅助角公式,可得,∵,∴,即,故.选择条件②由,得,∵,∴,因此

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论