版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年息烽县第一中学数学高二上期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知F1、F2是双曲线E:(a>0,b>0)的左、右焦点,过F1的直线与双曲线左、右两支分别交于点P、Q.若,M为PQ的中点,且,则双曲线的离心率为()A. B.C. D.2.已知函数在上是增函数,则实数的取值范围是()A. B.C. D.3.已知双曲线,过点作直线l与双曲线交于A,B两点,则能使点P为线段AB中点的直线l的条数为()A.0 B.1C.2 D.34.已知抛物线的焦点为,点为抛物线上一点,点,则的最小值为()A. B.2C. D.35.下列说法正确的有()个.①向量,,,不一定成立;②圆与圆外切③若,则数是数,的等比中项.A.1 B.2C.3 D.06.在某次赛车中,名参赛选手的成绩(单位:)全部介于到之间(包括和),将比赛成绩分为五组:第一组,第二组,···,第五组,其频率分布直方图如图所示.若成绩在内的选手可获奖,则这名选手中获奖的人数为A. B.C. D.7.已知函数,则()A. B.0C. D.18.在空间直角坐标系中,,,平面的一个法向量为,则平面与平面夹角的正弦值为()A. B.C. D.9.曲线上的点到直线的距离的最小值是()A.3 B.C.2 D.10.中国明代商人程大位对文学和数学颇感兴趣,他于60岁时完成杰作《直指算法统宗》.这是一本风行东亚的数学名著,该书A.76石 B.77石C.78石 D.79石11.已知为偶函数,且,则___________.12.变量,之间有如下对应数据:3456713111087已知变量与呈线性相关关系,且回归方程为,则的值是()A.2.3 B.2.5C.17.1 D.17.3二、填空题:本题共4小题,每小题5分,共20分。13.已知函数f(x)=x3-3x2+2,则函数f(x)的极大值为______14.年月我国成功发射了第一颗人造地球卫星“东方红一号”,这颗卫星的运行轨道是以地心(地球的中心)为一个焦点的椭圆.已知卫星的近地点(离地面最近的点)距地面的高度约为,远地点(离地面最远的点)距地面的高度约为,且地心、近地点、远地点三点在同一直线上,地球半径约为,则卫星运行轨道是上任意两点间的距离的最大值为___________15.银行一年定期的存款的利率为p,如果将a元存入银行一年定期,到期后将本利再存一年定期,到期后再存一年定期……,则10年后到期本利共________元16.写出一个离心率且焦点在轴上的双曲线的标准方程________,并写出该双曲线的渐近线方程________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列是公比为2的等比数列,是与的等差中项(1)求数列的通项公式;(2)若,求数列的前n项和18.(12分)某中学共有名学生,其中高一年级有名学生,为了解学生的睡眠情况,用分层抽样的方法,在三个年级中抽取了名学生,依据每名学生的睡眠时间(单位:小时),绘制出了如图所示的频率分布直方图.(1)求样本中高一年级学生的人数及图中的值;(2)估计样本数据的中位数(保留两位小数);(3)估计全校睡眠时间超过个小时的学生人数.19.(12分)在中,角A,B,C所对的边分别为a,b,c,且.(1)求角A的大小;(2)若,且的面积为,求的周长.20.(12分)已知抛物线y2=2px(p>0)的焦点为F,过F且与x轴垂直的直线交该抛物线于A,B两点,|AB|=4(1)求抛物线的方程;(2)过点F的直线l交抛物线于P,Q两点,若△OPQ的面积为4,求直线l的斜率(其中O为坐标原点)21.(12分)已知关于的不等式的解集为.(1)求的值;(2)若,求的最小值,并求此时的值.22.(10分)如图,直角梯形与等腰直角三角形所在的平面互相垂直,,,.(1)求点C到平面的距离;(2)线段上是否存在点F,使与平面所成角正弦值为,若存在,求出,若不存在,说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题干条件得到,设出,利用双曲线定义表达出其他边长,得到方程,求出,从而得到,,利用勾股定理求出的关系,求出离心率.【详解】因为M为PQ的中点,且,所以△为等腰三角形,即,因为,设,则,由双曲线定义可知:,所以,则,又,所以,解得:,由勾股定理得:,其中,在三角形中,由勾股定理得:,即,解得:故选:D2、A【解析】由题意可知,对任意的恒成立,可得出对任意的恒成立,利用基本不等式可求得实数的取值范围.【详解】因为,则,由题意可知,对任意的恒成立,所以,对任意的恒成立,由基本不等式可得,当且仅当时,等号成立,所以,.故选:A.3、A【解析】先假设存在这样的直线,分斜率存在和斜率不存在设出直线的方程,当斜率k存在时,与双曲线方程联立,消去,得到关于的一元二次方程,直线与双曲线相交于两个不同点,则,,又根据是线段的中点,则,由此求出与矛盾,故不存在这样的直线满足题意;当斜率不存在时,过点的直线不满足条件,故符合条件的直线不存在.详解】设过点的直线方程为或,①当斜率存在时有,得(*)当直线与双曲线相交于两个不同点,则必有:,即又方程(*)的两个不同的根是两交点、的横坐标,又为线段的中点,,即,,使但使,因此当时,方程①无实数解故过点与双曲线交于两点、且为线段中点的直线不存在②当时,经过点的直线不满足条件.综上,符合条件的直线不存在故选:A4、D【解析】求出抛物线C的准线l的方程,过A作l的垂线段,结合几何意义及抛物线定义即可得解.【详解】抛物线的准线l:,显然点A在抛物线C内,过A作AM⊥l于M,交抛物线C于P,如图,在抛物线C上任取不同于点P的点,过作于点N,连PF,AN,,由抛物线定义知,,于是得,即点P是过A作准线l的垂线与抛物线C的交点时,取最小值,所以的最小值为3.故选:D5、A【解析】由向量数量积为实数,以及向量共线定理,即可判断①;求出圆心距,即可判断两圆位置关系,从而判断②;取,即可判断③【详解】对于①,与共线,与共线,故不一定成立,故①正确;对于②,圆的圆心为,半径为,圆可变形为,故其圆心为,半径为,则圆心距,由,所以两圆相交,故②错误;对于③,若,取,则数不是数的等比中项,故③错误故选:A6、A【解析】先根据频率分布直方图确定成绩在内的频率,进而可求出结果.【详解】由题意可得:成绩在内的频率为,又本次赛车中,共名参赛选手,所以,这名选手中获奖的人数为.故选A【点睛】本题主要考查频率分布直方图,会根据频率分布直方图求频率即可,属于常考题型.7、B【解析】先求导,再代入求值.详解】,所以.故选:B8、A【解析】根据给定条件求出平面的法向量,再借助空间向量夹角公式即可计算作答.【详解】设平面的法向量为,则,令,得,令平面与平面夹角为,则,,所以平面与平面夹角的正弦值为.故选:A9、D【解析】求出函数的导函数,设切点为,依题意即过切点的切线恰好与直线平行,此时切点到直线的距离最小,求出切点坐标,再利用点到直线的距离公式计算可得;【详解】解:因为,所以,设切点为,则,解得,所以切点为,点到直线的距离,所以曲线上的点到直线的距离的最小值是;故选:D10、C【解析】设出未知数,列出方程组,求出答案.【详解】设甲、乙、丙分得的米数为x+d,x,x-d,则,解得:d=18,,解得:x=60,所以x+d=60+18=78(石)故选:C11、8【解析】由已知条件中的偶函数即可计算出结果,【详解】为偶函数,且,.故答案为:812、D【解析】将样本中心点代入回归方程后求解【详解】,,将样本中心点代入回归方程,得故选:D二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】利用导数研究函数的单调区间,从而得到极大值.【详解】,令,解得:,00极大值极小值所以当时,函数取得极大值,即函数的极大值为.故答案为:14、【解析】根据题意由a-c=439+6371,a+c=2384+6371,求得2a即可.【详解】设椭圆的长半轴长为a,半焦距为c,由题意得:a-c=439+6371,a+c=2384+6371,两式相加得:2a=15565,因为椭圆上任意两点间的距离的最大值为长轴长2a,所以卫星运行轨道是上任意两点间的距离的最大值为,故答案为:1556515、【解析】根据题意求出每年底的本利和,归纳即可.【详解】由题意知,第一年本利和为:元,第二年本利和为:元,第三年本利和为:元,以此类推,第十年本利和为:元,故答案:16、①.(答案不唯一)②.(答案不唯一)【解析】令双曲线为,根据离心率可得,结合双曲线参数关系写出一个符合要求的双曲线方程,进而写出对应的渐近线方程.【详解】由题设,可令双曲线为且,∴,则,故为其中一个标准方程,此时渐近线方程为.故答案为:,(答案不唯一).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据给定条件列式求出数列的首项即可作答.(2)由(1)的结论求出,再借助裂项相消法计算作答.【小问1详解】因为数列是公比为2的等比数列,且是与的等差中项,则有,即,解得,所以.【小问2详解】由(1)知,,则,即有,所以.18、(1)样本中高一年级学生的人数为,;(2);(3)【解析】(1)利用分层抽样可求得样本中高一年级学生的人数,利用频率直方图中所有矩形的面积之和为可求得的值;(2)利用中位数左边的矩形面积之和为可求得中位数的值;(3)利用频率分布直方图可计算出全校睡眠时间超过个小时的学生人数.【小问1详解】解:样本中高一年级学生的人数为.,解得.【小问2详解】解:设中位数为,前两个矩形的面积之和为,前三个矩形的面积之和为,所以,则,得,故样本数据的中位数约为.【小问3详解】解:由图可知,样本数据落在的频率为,故全校睡眠时间超过个小时的学生人数约为.19、(1)(2)【解析】(1)由,根据正弦定理化简得,利用余弦定理求得,即可求解;(2)由的面积,求得,结合余弦定理,求得,即可求解.【小问1详解】解:因为,所以.由正弦定理得,可得,所以,因为,所以.【小问2详解】解:由的面积,所以.由余弦定理得,所以,所以,所以的周长为.20、(1);(2).【解析】(1)根据抛物线的定义以及抛物线通径的性质可得,从而可得结果;(2)设直线的方程为,代入,得,利用弦长公式,结合韦达定理可得的值,由点到直线的距离公式,根据三角形面积公式可得,从而可得结果.【详解】(1)由抛物线的定义得到准线的距离都是p,所以|AB|=2p=4,所以抛物线的方程为y2=4x(2)设直线l的方程为y=k(x-1),P(x1,y1),Q(x2,y2)因为直线l与抛物线有两个交点,所以k≠0,得,代入y2=4x,得,且恒成立,则,y1y2=-4,所以又点O到直线l的距离,所以,解得,即【点睛】本题主要考查直线与抛物线的位置关系的相关问题,意在考查综合利用所学知识解决问题能力和较强的运算求解能力,其常规思路是先把直线方程与圆锥曲线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题21、(1);(2),.【解析】(1)利用根与系数的关系,得到等式和不等式,最后求出的值;(2)化简函数的解析式,利用基本不等式可以求出函数的最小值.【小问1详解】由题意知:,解得【小问2详解】由(1)知,∴,由对勾函数单调性知在上单调递减,∴,即当,函数的最小值为22、(1)(2)存在,1【解析】(1)由题意建立空间直角坐标系,求得平面向量的法向量和相应点的坐标,利用点面距离公式即可求得点面距离(2)假设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年数控铣床项目规划申请报告模范
- 2024-2025学年宣城市宁国市三上数学期末监测试题含解析
- 2025年医用植入材料项目提案报告模范
- 2025年扫瞄隧道显微镜项目立项申请报告模稿
- 二年级上册语文教学计划集合5篇
- 专科生求职信合集7篇
- 销售主管个人述职报告
- 教育的实习报告范文九篇
- 员工离职报告(汇编15篇)
- 《观察物体(二)》教学实录-2023-2024学年四年级下册数学人教版
- 亚马逊跨境电商运营与广告实战
- 高级FAE现场应用工程师工作计划工作总结述职报告
- 落实国家组织药品集中采购使用检测和应急预案
- 高标准农田建设项目(二标段)施工图设计说明
- 猪场配怀工作安排方案设计
- GB/T 2-2016紧固件外螺纹零件末端
- GB/T 12467.5-2009金属材料熔焊质量要求第5部分:满足质量要求应依据的标准文件
- GB 17740-1999地震震级的规定
- 安全生产事故举报奖励制度
- 冠心病健康教育完整版课件
- 永久避难硐室安装施工组织措施
评论
0/150
提交评论