![2023-2024学年江苏省徐州市丰县中学高二上数学期末监测试题含解析_第1页](http://file4.renrendoc.com/view/f745b2505bc2697a1dbea82f1b25fb0e/f745b2505bc2697a1dbea82f1b25fb0e1.gif)
![2023-2024学年江苏省徐州市丰县中学高二上数学期末监测试题含解析_第2页](http://file4.renrendoc.com/view/f745b2505bc2697a1dbea82f1b25fb0e/f745b2505bc2697a1dbea82f1b25fb0e2.gif)
![2023-2024学年江苏省徐州市丰县中学高二上数学期末监测试题含解析_第3页](http://file4.renrendoc.com/view/f745b2505bc2697a1dbea82f1b25fb0e/f745b2505bc2697a1dbea82f1b25fb0e3.gif)
![2023-2024学年江苏省徐州市丰县中学高二上数学期末监测试题含解析_第4页](http://file4.renrendoc.com/view/f745b2505bc2697a1dbea82f1b25fb0e/f745b2505bc2697a1dbea82f1b25fb0e4.gif)
![2023-2024学年江苏省徐州市丰县中学高二上数学期末监测试题含解析_第5页](http://file4.renrendoc.com/view/f745b2505bc2697a1dbea82f1b25fb0e/f745b2505bc2697a1dbea82f1b25fb0e5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年江苏省徐州市丰县中学高二上数学期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.春秋时期孔子及其弟子所著的《论语·颜渊》中有句话:“非礼勿视,非礼勿听,非礼勿言,非礼勿动.”意思是:不符合礼的不看,不符合礼的不听,不符合礼的不说,不符合礼的不做.“非礼勿听”可以理解为:如果不合礼,那么就不听.从数学角度来说,“合礼”是“听”的()A.充分条件 B.必要条件C.充要条件 D.既不充分也不必要条件2.在中,已知角A,B,C所对的边为a,b,c,,,,则()A. B.C. D.13.各项均为正数的等比数列的前项和为,若,,则()A. B.C. D.4.用数学归纳法证明“”时,由假设证明时,不等式左边需增加的项数为()A. B.C. D.5.如图,平面四边形中,,,,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A. B.C. D.6.如图,在正方体中,是侧面内一动点,若到直线与直线的距离相等,则动点的轨迹所在的曲线是()A.直线 B.圆C.双曲线 D.抛物线7.在区间上随机取一个数,则事件“曲线表示圆”的概率为()A. B.C. D.8.设是双曲线的两个焦点,为坐标原点,点在上且,则的面积为()A. B.3C. D.29.已知正方形ABCD的边长为2,E,F分别为CD,CB的中点,分别沿AE,AF将三角形ADE,ABF折起,使得点B,D恰好重合,记为点P,则AC与平面PCE所成角等于()A. B.C. D.10.已知抛物线的准线方程为,则此抛物线的标准方程为()A. B.C. D.11.若双曲线的离心率为,则其渐近线方程为A.y=±2x B.y=C. D.12.已知,,,若、、三个向量共面,则实数A3 B.5C.7 D.9二、填空题:本题共4小题,每小题5分,共20分。13.已知点在圆上,点在圆上,则的最小值是__________14.从双曲线上一点作轴的垂线,垂足为,则线段中点的轨迹方程为___________.15.已知函数,___________.16.已知点,点是直线上的动点,则的最小值是_____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的三个顶点的坐标分别为,,(1)求边AC上的中线所在直线方程;(2)求的面积18.(12分)已知点P到点的距离比它到直线的距离小1.(1)求点P的轨迹方程;(2)点M,N在点P的轨迹上且位于x轴的两侧,(其中O为坐标原点),求面积的最小值.19.(12分)在2016珠海航展志愿服务开始前,团珠海市委调查了北京师范大学珠海分校某班50名志愿者参加志愿服务礼仪培训和赛会应急救援培训的情况,数据如下表:单位:人参加志愿服务礼仪培训未参加志愿服务礼仪培训参加赛会应急救援培训88未参加赛会应急救援培训430(1)从该班随机选1名同学,求该同学至少参加上述一个培训的概率;(2)在既参加志愿服务礼仪培训又参加赛会应急救援培训的8名同学中,有5名男同学A,A,A,A,A名女同学B,B,B现从这5名男同学和3名女同学中各随机选1人,求A被选中且B未被选中的概率.20.(12分)如图,已知椭圆:经过点,离心率(1)求椭圆的标准方程;(2)设是经过右焦点的任一弦(不经过点),直线与直线:相交于点,记,,的斜率分别为,,,求证:,,成等差数列21.(12分)在三棱锥A—BCD中,已知CB=CD=,BD=2,O为BD的中点,AO⊥平面BCD,AO=2,E为AC的中点(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=BC,设二面角F—DE—C的大小为θ,求sinθ的值22.(10分)如图1,已知矩形中,,E为上一点且.现将沿着折起,使点D到达点P的位置,且,得到的图形如图2.(1)证明为直角三角形;(2)设动点M在线段上,判断直线与平面位置关系,并说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】如果不合礼,那么就不听.转化为它的逆否命题.即可判断出答案.【详解】如果不合礼,那么就不听的逆否命题为:如果听,那么就合理.故“合礼”是“听”的必要条件.故选:B.2、B【解析】利用正弦定理求解.【详解】在中,由正弦定理得,解得,故选:B.3、D【解析】根据等比数列性质可知,,,成等比数列,由等比中项特点可构造方程求得,由等比数列通项公式可求得,进而得到结果.【详解】由等比数列的性质可得:,,,成等比数列,则,即,解得:,,,解得:.故选:D.4、C【解析】当成立,写出左侧的表达式,当时,写出对应的关系式,观察计算即可【详解】从到成立时,左边增加的项为,因此增加的项数是,故选:C5、A【解析】将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,在中,计算半径即可.【详解】由,,可知平面将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,记的外心为,由为等边三角形,可得又,故在中,此即为外接球半径,从而外接球表面积为故选:A【点睛】本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属中档题.6、D【解析】由到直线的距离等于到点的距离可得到直线的距离等于到点的距离,然后可得答案.【详解】因为到直线的距离等于到点的距离,所以到直线的距离等于到点的距离,所以动点的轨迹是以为焦点、为准线的抛物线故选:D7、D【解析】先求出曲线表示圆参数的范围,再由几何概率可得答案.【详解】由可得曲线表示圆,则解得或又所以曲线表示圆的概率为故选:D8、B【解析】由是以P为直角直角三角形得到,再利用双曲线的定义得到,联立即可得到,代入中计算即可.【详解】由已知,不妨设,则,因为,所以点在以为直径的圆上,即是以P为直角顶点的直角三角形,故,即,又,所以,解得,所以故选:B【点晴】本题考查双曲线中焦点三角形面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.9、A【解析】如图,以PE,PF,PA分别为x,y,z轴建立空间直角坐标系,利用空间向量求解【详解】由题意得,因为正方形ABCD的边长为2,E,F分别为CD,CB的中点,所以,所以,所以所以PA,PE,PF三线互相垂直,故以PE,PF,PA分别为x,y,z轴建立空间直角坐标系,则,,,,设,则由,,,得,解得,则设平面的法向量为,则,令,则,因为,所以AC与平面PCE所成角的正弦值,因为AC与平面PCE所成角为锐角,所以AC与平面PCE所成角为,故选:A10、D【解析】由已知设抛物线方程为,由题意可得,求出,从而可得抛物线的方程【详解】因为抛物线的准线方程为,所以设抛物线方程为,则,得,所以抛物线方程为,故选:D,11、B【解析】双曲线的离心率为,渐进性方程为,计算得,故渐进性方程为.【考点定位】本小题考查了离心率和渐近线等双曲线的性质.12、A【解析】由空间向量共面原理得存在实数,,使得,由此能求出实数【详解】解:,,,、、三个向量共面,存在实数,,使得,即有:,解得,,实数故选:【点睛】本题考查空间向量共面原理的应用,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、3-5【解析】因为点在圆上,点在圆上,故两圆的圆心分别为半径分别为和两圆的圆心距为,故两圆相离,则最小值为,故答案为.考点:1、圆的方程及圆的几何性质;2、两点间的距离公式及最值问题.【方法点晴】本题主要考查圆的方程及几何性质、两点间的距离公式及最值问题的应用,属于难题.解决解析几何的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将解析几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题就是利用圆的几何性质,将的最小值转化两圆心的距离减半径解答的.14、.【解析】根据题意,设,进而根据中点坐标公式及点P已知双曲线上求得答案.【详解】由题意,设,则,则,即,因为,则,即的轨迹方程为.15、【解析】直接利用分段函数的解析式即可求解.【详解】因为,所以,所以.故答案为:-116、【解析】直接根据点到直线的距离公式即可求出【详解】线段最短时,与直线垂直,所以,的最小值即为点到直线的距离,则.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)先求得的中点,由此求得边AC上的中线所在直线方程.(2)结合点到直线距离公式求得的面积.【小问1详解】的中点为,所以边AC上的中线所在直线方程为.【小问2详解】直线的方程为,到直线的距离为,,所以.18、(1);(2).【解析】(1)根据给定条件可得点P到点的距离等于它到直线的距离,再由抛物线定义即可得解.(2)由(1)设出点M,N的坐标,再结合给定条件及三角形面积定理列式,借助均值不等式计算作答.【小问1详解】因点P到点的距离比它到直线的距离小1,显然点P与F在直线l同侧,于是得点P到点的距离等于它到直线的距离,则点P的轨迹是以F为焦点,直线为准线的抛物线,所以点P的轨迹方程是.【小问2详解】由(1)设点,,且,因,则,解得,S,当且仅当,即时取“=”,所以面积的最小值为.【点睛】思路点睛:圆锥曲线中的几何图形面积范围或最值问题,可以以直线的斜率、横(纵)截距、图形上动点的横(纵)坐标为变量,建立函数关系求解作答.19、(1);(2).【解析】(1)根据表中数据知未参加志愿服务礼仪培训又未参加赛会应急救援培训的有30人,故至少参加上述一个培训的共有人.从而求得概率;(2)从这5名男同学和3名女同学中各随机选1人,列出其一切可能的结果,从而求得被选中且未被选中的概率.【详解】解:由调查数据可知,既未参加志愿服务礼仪培训又未参加赛会应急救援培训的有30人,故至少参加上述一个培训的共有人.从该班随机选1名同学,该同学至少参加上述一个培训的概率为;从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:,,,共15个,根据题意,这些基本事件的出现是等可能的,事件“被选中且未被选中”所包含的基本事件有:,共2个,被选中且未被选中的概率为.20、(1);(2)证明见解析【解析】(1)由点在椭圆上得到,再由,得到,联立方程组,求得的值,即可得到椭圆的标准方程;(2)由(1)得椭圆右焦点坐标,设直线的方程为,联立方程组,求得,及,结合斜率公式得到,结合,求得,即可得到,,成等差数列【详解】(1)由题意,点在椭圆上得,可得①又由,所以②由①②联立且,可得,,,故椭圆的标准方程为(2)由(1)知,椭圆的方程为,可得椭圆右焦点坐标,显然直线斜率存在,设的斜率为,则直线的方程为,联立方程组,整理得,设,,则有,,由直线的方程为,令,可得,即,从而,,,又因为共线,则有,即有,所以,将,代入得,又由,所以,即,,成等差数列【点睛】直线与圆锥曲线的综合问题的求解策略:对于直线与圆锥曲线的位置关系的综合应用问题,通常联立直线方程与圆锥曲线方程,应用一元二次方程根与系数的关系,以及弦长公式等进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力21、(1)(2)【解析】(1)建立空间直角坐标系,利用向量数量积求直线向量夹角,即得结果;(2)先求两个平面法向量,根据向量数量积求法向量夹角,最后根据二面角与向量夹角关系得结果.【详解】(1)连以为轴建立空间直角坐标系,则从而直线与所成角的余弦值为(2)设平面一个法向量为令设平面一个法向量为令因此【点睛】本题考查利用向量求线线角与二面角,考查基本分析求解能力,属中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年12月金华事业单位公开招聘金华职业技术大学公开招聘2人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2024年12月湖北艺术职业学院公开招聘青年实验艺术团舞蹈演员12人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 高考语文二轮复习【知识精研】病句的辨析与修改 课件
- 体检市场分析课件
- 《让世界充满爱》课件
- 《内部PK机制》课件
- 恒大大盘暴力售卖模式课件
- 9 枫树上的喜鹊 【知识精研】语文二年级下册统编版
- 《过滤交流材料》课件
- 二零二五年度离婚协议中关于子女抚养费支付的专项合同3篇
- 2024-2025学年七年级数学下册第7章《幂的运算》检测卷(苏科版2024 含答案解析)
- 2025春季开学前学校安全隐患排查工作实施方案:5大安全排查一个都不能少
- 亲子关系断绝协议书范文
- 2024-2025学年教科版八年级物理下册 第12章 机械能 综合素质评价卷(含答案)
- 2024年苏州职业大学高职单招职业适应性测试历年参考题库含答案解析
- (完整版)高考英语词汇3500词(精校版)
- 2024年联勤保障部队第九四〇医院社会招聘笔试真题
- 【人教版化学】选择性必修1 知识点默写小纸条(答案背诵版)
- 00015-英语二自学教程-unit1
- 2024中华人民共和国农村集体经济组织法详细解读课件
- 中小学教师教育法律法规培训PPT页
评论
0/150
提交评论