版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年山东省东明县一中高二上数学期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.实数m变化时,方程表示的曲线不可以是()A.直线 B.圆C椭圆 D.双曲线2.“1<x<2”是“x<2”成立的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件3.已知实数满足方程,则的最大值为()A.3 B.2C. D.4.已知等比数列中,,则这个数列的公比是()A.2 B.4C.8 D.165.“”是“方程表示双曲线”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.椭圆与(0<k<9)的()A.长轴的长相等B.短轴的长相等C.离心率相等D.焦距相等7.已知数列{}满足,且,若,则=()A.-8 B.-11C.8 D.118.如图,在正三棱柱中,若,则C到直线的距离为()A. B.C. D.9.某手机上网套餐资费:每月流量500M以下(包含500M),按20元计费;超过500M,但没超过1000M(包含1000M)时,超出部分按0.15元/M计费;超过1000M时,超出部分按0.2元/M计费,流量消费累计的总流量达到封顶值(15GB)则暂停当月上网服务.若小明使用该上网套餐一个月的费用是100元,则他的上网流量是()A.800M B.900MC.1025M D.1250M10.已知抛物线的焦点为F,,点是抛物线上的动点,则当的值最小时,=()A.1 B.2C. D.411.攒(cuán)尖是我国古代建筑中屋顶的一种结构样式,多见于亭阁或园林式建筑.下图是一顶圆形攒尖,其屋顶可近似看作一个圆锥,其轴截面(过圆锥轴的截面)是底边长为,顶角为的等腰三角形,则该屋顶的面积约为()A. B.C. D.12.设为双曲线与椭圆的公共的左右焦点,它们在第一象限内交于点是以线段为底边的等腰三角形,若椭圆的离心率范围为,则双曲线的离心率取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若椭圆的焦点在轴上,过点作圆的切线,切点分别为,,直线恰好经过椭圆的上焦点和右顶点,则椭圆的方程是________________14.已知数列的各项均为正数,记为的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立①数列是等差数列:②数列是等差数列;③注:若选择不同的组合分别解答,则按第一个解答计分15.如图,已知椭圆E的方程为(a>b>0),A为椭圆的左顶点,B,C在椭圆上,若四边形OABC为平行四边形,且∠OAB=30°,则椭圆的离心率等于________16.为增强广大师生生态文明意识,大力推进国家森林城市建设创建进程,某班26名同学在一段直线公路一侧植树,每人植一棵(各自挖坑种植),相邻两棵树相距均为10米,在同学们挖坑期间,运到的树苗集中放置在了某一树坑旁边,然后每位同学挖好自己的树坑后,均从各自树坑出发去领取树苗.记26位同学领取树苗往返所走的路程总和为,则的最小值为______米三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)求关于x的不等式的解集;(2)若对任意的,恒成立,求实数a的取值范围18.(12分)在平面直角坐标系xOy中,O为坐标原点,已知直线:mx-(2-m)y-4=0与直线h:x+y-2=0的交点M在第一三象限的角平分线上.(1)求实数m的值;(2)若点P在直线l上且,求点P的坐标.19.(12分)已知函数(1)判断的零点个数;(2)若对任意恒成立,求的取值范围20.(12分)如图,在四棱锥中,底面为直角梯形,平面平面,,.(1)证明:平面;(2)已知,,,且直线与平面所成角的正弦值为,求平面与平面夹角的余弦值.21.(12分)某港口船舶停靠的方案是先到先停,且每次只能停靠一艘船.(1)若甲乙两艘船同时到达港口,双方约定各派一名代表猜拳:从1,2,3,4,5中各随机选一个数,若两数之和为奇数,则甲先停靠;若两数之和为偶数,则乙先停靠,这种方式对双方是否公平?请说明理由;(2)若甲、乙两船在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1h,乙船停泊时间为2h,求它们中的任意一艘都不需要等待码头空出的概率.22.(10分)设为数列的前n项和,且满足(1)求证:数列为等差数列;(2)若,且成等比数列,求数列的前项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据的取值分类讨论说明【详解】时方程化为,为直线,时,方程化为,为椭圆,时,方程化为,为双曲线,而,因此曲线不可能是圆故选:B2、A【解析】因为“若,则”是真命题,“若,则”是假命题,所以“”是“”成立的充分不必要条件.选A考点:充分必要条件的判断【易错点睛】本题主要考查了充分条件,必要条件,充要条件的判断,属于基础题.对于命题“若,则”是真命题,我们说,并且说是的充分条件,是的必要条件,命题“若,则”是假命题,我们说,由充分条件,必要条件的定义,可以判断出“”是“”成立的充分不必要条件.掌握充分条件,必要条件的定义是解题关键3、D【解析】将方程化为,由圆的几何性质可得答案.【详解】将方程变形为,则圆心坐标为,半径,则圆上的点的横坐标的范围为:则x的最大值是故选:D.4、A【解析】直接利用公式计算即可.【详解】设等比数列的公比为,由已知,,所以,解得.故选:A5、A【解析】方程表示双曲线则,解得,是“方程表示双曲线”的充分不必要条件.故选:A6、D【解析】根据椭圆方程求得两个椭圆的,由此确定正确选项.【详解】椭圆与(0<k<9)的焦点分别在x轴和y轴上,前者a2=25,b2=9,则c2=16,后者a2=25-k,b2=9-k,则显然只有D正确故选:D7、C【解析】利用递推关系,结合取值,求得即可.【详解】因为,且,,故可得,解得(舍),;同理求得,,.故选:C.8、D【解析】取AC的中点O,建立如图所示的空间直角坐标系,根据点到线距离的向量求法和投影的定义计算即可.【详解】由题意知,,取AC的中点O,则,建立如图所示的空间直角坐标系,则,所以,所以在上的投影的长度为,故点C到直线距离为:.故选:D9、C【解析】根据已知条件列方程,化简求得小明的上网流量.【详解】显然小明上网流量超过了1000M但远远没达到封顶值,假设超出部分为M,由得.故选:C10、B【解析】根据抛物线定义,转化,要使有最小值,只需最大,即直线与抛物线相切,联立直线方程与抛物线方程,求出斜率,然后求出点坐标,即可求解.【详解】由题知,抛物线的准线方程为,,过P作垂直于准线于,连接,由抛物线定义知.由正弦函数知,要使最小值,即最小,即最大,即直线斜率最大,即直线与抛物线相切.设所在的直线方程为:,联立抛物线方程:,整理得:则,解得即,解得,代入得或,再利用焦半径公式得故选:B.关键点睛:本题考查抛物线的性质,直线与抛物线的位置关系,解题的关键是要将取最小值转化为直线斜率最大,再转化为抛物线的切线,考查学生的转化思想与运算求解能力,属于中档题.11、B【解析】由轴截面三角形,根据已知可得圆锥底面半径和母线长,然后可解.【详解】轴截面如图,其中,,所以,所以,所以圆锥的侧面积.故选:B12、A【解析】设椭圆的标准方程为,根据椭圆和双曲线的定义可得到两图形离心率之间的关系,再根据椭圆的离心率范围可得双曲线的离心率取值范围.【详解】设椭圆的标准方程为,,则有已知,两式相减得,即,,因为,解得故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设过点的圆的切线为,分类讨论求得直线分别与圆的切线,求得直线的方程,从而得到直线与轴、轴的交点坐标,得到椭圆的右焦点和上顶点,进而求得椭圆的方程.【详解】设过点的圆的切线分别为,即,当直线与轴垂直时,不存在,直线方程为,恰好与圆相切于点;当直线与轴不垂直时,原点到直线的距离为,解得,此时直线的方程为,此时直线与圆相切于点,因此,直线的斜率为,直线的方程为,所以直线交轴交于点,交于轴于点,椭圆的右焦点为,上顶点为,所以,可得,所以椭圆的标准方程为.故答案为:.14、证明过程见解析【解析】选①②作条件证明③时,可设出,结合的关系求出,利用是等差数列可证;也可分别设出公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系,进行证明.选①③作条件证明②时,根据等差数列的求和公式表示出,结合等差数列定义可证;选②③作条件证明①时,设出,结合的关系求出,根据可求,然后可证是等差数列;也可利用前两项的差求出公差,然后求出通项公式,进而证明出结论.【详解】选①②作条件证明③:[方法一]:设,则,当时,;当时,;因为也是等差数列,所以,解得;所以,,故.[方法二]:设等差数列的公差为d,等差数列的公差为,则,将代入,化简得对于恒成立则有,解得.所以选①③作条件证明②:因为,是等差数列,所以公差,所以,即,因为,所以是等差数列.选②③作条件证明①:[方法一]:设,则,当时,;当时,;因为,所以,解得或;当时,,当时,满足等差数列的定义,此时为等差数列;当时,,不合题意,舍去.综上可知为等差数列.[方法二]【最优解】:因为,所以,,因为也为等差数列,所以公差,所以,故,当时,,当时,满足上式,故的通项公式为,所以,,符合题意.【整体点评】这类题型在解答题后可证是等差数列;法二:利用是等差数列即前两项的差求出公差,然后求出的通项公式,利用,求出的通项公式,进而证明出结论.15、【解析】首先利用椭圆的对称性和为平行四边形,可以得出、两点是关于轴对称,进而得到;设,,,从而求出,然后由,利用,求得,最后根据得出离心率【详解】解:是与轴重合的,且四边形为平行四边形,所以、两点的纵坐标相等,、的横坐标互为相反数,、两点是关于轴对称的由题知:四边形为平行四边形,所以可设,,代入椭圆方程解得:设为椭圆的右顶点,,四边形为平行四边形对点:解得:根据:得:故答案为:16、【解析】根据对称性易知:当树苗放在第13或14个坑,26位同学领取树苗往返所走的路程总和最小,再应用等差数列前n项和的求法求26位同学领取树苗往返所走的路程总和.【详解】将26个同学对应的26个坑分左右各13个坑,∴根据对称性:树苗放在左边13个坑,与放在对称右边的13个坑,26个同学所走的总路程对应相等,∴当树苗放在第13个坑,26位同学领取树苗往返所走的路程总和最小,此时,左边13位同学所走的路程分别为,右边13位同学所走的路程分别为,∴最小值为米.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析(2)【解析】(1)求出对应方程的根,再根据根的大小进行讨论,即可得解;(2)对任意的,恒成立,即恒成立,结合基本不等式求出的最小值即可得解.【小问1详解】解:由已知易得即为:,令可得与,所以,当时,原不等式的解集为;当时,原不等式的解集为;当时,原不等式的解集为;【小问2详解】解:由可得,由,得,所以可得,,当且仅当,即时等号成立,所以,所以的取值范围是.18、(1)3(2)【解析】(1)求出直线与直线的交点坐标,代入直线的方程可得值;(2)设,代入已知等式可求得值,得坐标【小问1详解】由得,即所以,【小问2详解】由(1)直线方程是,在直线上,设,则,解得,所以点坐标为19、(1)个;(2).【解析】(1)求,利用导数判断的单调性,结合单调性以及零点存在性定理即可求解;(2)由题意可得对任意恒成立,令,则,利用导数求的最小值即可求解.【小问1详解】的定义域为,由可得,当时,;当时,;所以在上单调递减,在上单调递增,当时,,,此时在上无零点,当时,,,,且在上单调递增,由零点存在定理可得在区间上存在个零点,综上所述有个零点.【小问2详解】由题意可得:对任意恒成立,即对任意恒成立,令,则,由可得:,当时,;当时,,所以在上单调递减,在上单调递增,所以,所以,所以的取值范围.20、(1)证明过程见解析;(2).【解析】(1)利用平面与平面垂直的性质得出直线与平面垂直,进而得出平面;(2)建立空间直角坐标系即可求解.【小问1详解】证明:因为平面平面,交线为且平面中,所以平面又平面所以又,且所以平面【小问2详解】解:由(1)知,平面且所以、、两两垂直因此以原点,建立如图所示的空间直角坐标系因为,,,设所以,,,,由(1)知,平面所以为平面的法向量且因为直线与平面所成角的正弦值为所以解得:所以,又,,所以,,,设平面与平面的法向量分别为:,所以,令,则令,则,,即设平面与平面夹角为则所以平面与平面夹角的余弦值为.21、(1)不公平,理由见解析.(2)【解析】(1)通过计算概率来进行判断.(2)利用几何概型计算出所求概率.【小问1详解】两数之和为奇数的概率为,两数之和为偶数的概率为,两个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论