




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京市第二十七中学高二数学第一学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数在区间有且仅有2个极值点,则m的取值范围是()A. B.C. D.2.设变量满足约束条件:,则的最小值()A. B.C. D.3.如图,在平行六面体中,底面是边长为的正方形,若,且,则的长为()A. B.C. D.4.“1<x<2”是“x<2”成立的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.七巧板是一种古老的中国传统智力玩具,顾名思义,是由七块板组成的.这七块板可拼成许多图形(1600种以上),如图所示,某同学用七巧板拼成了一个“鸽子”形状,若从“鸽子”身上任取一点,则取自“鸽子头部”(图中阴影部分)的概率是()A. B.C. D.6.已知实数,满足约束条件则的最大值为()A.10 B.8C.4 D.207.已知,,直线:,:,且,则的最小值为()A.2 B.4C.8 D.98.已知向量,,且,则值是()A. B.C. D.9.俗话说“好货不便宜,便宜没好货”,依此判断,“不便宜”是“好货”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件10.命题的否定是()A. B.C. D.11.已知实数,满足不等式组,若,则的最小值为()A. B.C. D.12.若函数的导函数在区间上是减函数,则函数在区间上的图象可能是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.等差数列的公差,是其前n项和,给出下列命题:若,且,则和都是中的最大项;给定n,对于一些,都有;存在使和同号;.其中正确命题的序号为___________.14.阿波罗尼斯与阿基米德、欧几里得被称为亚历山大时期的数学三巨匠.“阿波罗尼斯圆”是他的代表成果之一:平面上动点P到两定点A,B的距离之比满足(且,t为常数),则点的轨迹为圆.已知在平面直角坐标系中,,,动点P满足,则P点的轨迹为圆,该圆方程为_________;过点的直线交圆于两点,且,则_________15.已知双曲线M的中心在原点,以坐标轴为对称轴.从以下三个条件中任选两个条件,并根据所选条件求双曲线M的标准方程.①一个焦点坐标为;②经过点;③离心率为.你选择的两个条件是___________,得到的双曲线M的标准方程是___________.16.曲线在点处的切线方程为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知为各项均为正数的等比数列,且,(1)求数列的通项公式;(2)令,求数列前n项和18.(12分)如图,在多面体中,和均为等边三角形,D是的中点,.(1)证明:;(2)若,求多面体的体积.19.(12分)“绿水青山就是金山银山”,中国一直践行创新、协调、绿色、开放、共享的发展理念,着力促进经济实现高质量发展,决心走绿色、低碳、可持续发展之路.新能源汽车环保、节能,以电代油,减少排放,既符合我国的国情,也代表了世界汽车产业发展的方向工业部表示,到2025年我国新能源汽车销量占总销量将达20%以上.2021年,某集团以20亿元收购某品牌新能源汽车制造企业,并计划投资30亿元来发展该品牌.2021年该品牌汽车的销售量为10万辆,每辆车的平均销售利润为3000元.据专家预测,以后每年销售量比上一年增加10万辆,每辆车的平均销售利润比上一年减少10%(1)若把2021年看作第一年,则第n年的销售利润为多少亿元?(2)到2027年年底,该集团能否通过该品牌汽车实现盈利?(实现盈利即销售利润超过总投资,参考数据:,,)20.(12分)已知椭圆上的点到椭圆焦点的最大距离为3,最小距离为1(1)求椭圆的标准方程;(2)已知,分别是椭圆的左右顶点,是椭圆上异于,的任意一点,直线,分别交轴于点,,求的值21.(12分)求证:(1)是上的偶函数;(2)是上的奇函数.22.(10分)已知圆,直线,直线l与圆C相交于P,Q两点(1)求的最小值;(2)当的面积最大时,求直线l的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据导数的性质,结合余弦型函数的性质、极值的定义进行求解即可.【详解】由,,因为在区间有且仅有2个极值点,所以令,解得,因此有,故选:A2、D【解析】如图作出可行域,知可行域的顶点是A(-2,2)、B()及C(-2,-2),平移,当经过A时,的最小值为-8,故选D.3、D【解析】由向量线性运算得,利用数量积的定义和运算律可求得,由此可求得.【详解】由题意得:,,且,又,,,,.故选:D.4、A【解析】因为“若,则”是真命题,“若,则”是假命题,所以“”是“”成立的充分不必要条件.选A考点:充分必要条件的判断【易错点睛】本题主要考查了充分条件,必要条件,充要条件的判断,属于基础题.对于命题“若,则”是真命题,我们说,并且说是的充分条件,是的必要条件,命题“若,则”是假命题,我们说,由充分条件,必要条件的定义,可以判断出“”是“”成立的充分不必要条件.掌握充分条件,必要条件的定义是解题关键5、C【解析】设正方形边长为1,求出七巧板中“4”这一块的面积,然后计算概率【详解】设正方形边长为1,由正方形中七巧板形状知“4”这一块是正方形,边长为,面积为,所以概率为故选:C6、A【解析】根据约束条件作出可行域,再将目标函数表示的一簇直线画出向可行域平移即可求解.【详解】作出可行域,如图所示转化为,令则,作出直线并平移使它经过可行域点,经过时,,解得,所以此时取得最大值,即有最大值,即故选:A.7、C【解析】由,可求得,再由,利用基本不等式求出最小值即可.【详解】因为,所以,即,因为,,所以,当且仅当,即时等号成立,所以的最小值为8.故选:C.【点睛】本题考查垂直直线的性质,考查利用基本不等式求最值,考查学生的计算求解能力,属于中档题.8、A【解析】求出向量,的坐标,利用向量数量积坐标表示即可求解.【详解】因为向量,,所以,,因为,所以,解得:,故选:A.9、A【解析】将“好货”与“不便宜”进行相互推理即可求得答案.【详解】根据题意,“好货”一定“不便宜”,但是“不便宜”不一定是“好货”,所以“不便宜”是“好货”的必要不充分条件.故选:A.10、C【解析】根据含全称量词命题的否定可写出结果.【详解】全称命题的否定是特称命题,所以命题的否定是.故选:C11、B【解析】作出不等式组对应的平面区域,然后根据线性规划的几何意义求得答案.【详解】作出不等式组所对应的可行域如图三角形阴影部分,平行移动直线直线,可以看到当移动过点A时,在y轴上的截距最小,联立,解得,当且仅当动直线即过点时,取得最小值为,故选:B12、A【解析】根据导数概念和几何意义判断【详解】由题意得,图象上某点处的切线斜率随增大而减小,满足要求的只有A故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】对,根据数列的单调性和可判断;对和,利用等差数列的通项公式可直接推导;对,利用等差数列的前项和可直接推导.【详解】不妨设等差数列的首项为对,,可得:,解得:,即又,则是递减的,则中的前5项均为正数,所以和都是中的最大项,故正确;对,,故有:,故正确;对,,又,则,说明不存在使和同号,故错误;对,有:故并不是恒成立的,故错误故答案为:14、①.②.【解析】设,根据可得圆的方程,利用垂径定理可求.【详解】设,则,整理得到,即.因为,故为的中点,过圆心作的垂线,垂足为,则为的中点,则,故,解得,故答案为:,.15、①.①②或①③或②③②.或或【解析】选①②,根据焦点坐标及顶点坐标直接求解,选①③,根据焦点坐标及离心率求出即可得解,选②③,可由顶点坐标及离心率得出,即可求解.【详解】选①②,由题意则,,,双曲线的标准方程为,故答案为:①②;,选①③,由题意,,,,双曲线的标准方程为,选②③,由题意知,,,双曲线的标准方程为.故答案为:①②;或①③;或②③;.16、.【解析】由求导公式求出导数,再把代入求出切线的斜率,代入点式方程化为一般式即可.【详解】由题意得,∴在点处的切线的斜率是,则在点处的切线方程是,即.【点睛】本题考查导数的几何意义.注意区分“在某点处的切线”与“过某点的切线”,前者“某点”是切点,后者“某点”不一定是切点.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用基本量法,求出首项和公比,即可求解.(2)利用错位相减法,即可求解.【小问1详解】设等比数列公比为【小问2详解】18、(1)见详解(1).(2)16【解析】(1)证线面垂直从而证线线垂直.(2)把面体看成两个锥体,由已知线面垂直得高,并进一步可求锥体底面边长,从而得解.【小问1详解】因为,所以共面,连接、,因为和均为等边三角形,D是的中点,所以,,,所以面平,平面,【小问2详解】因为,,四边形是平行四边形,和均为等边三角形,D是的中点,所以,,平行四边形是正方形形,,.19、(1)亿元(2)该集团能通过该品牌汽车实现盈利【解析】(1)由题意可求得第n年的销售量,第n年每辆车的平均销售利润,从而可求出第n年的销售利润,(2)利用错位相减法求出到2027年年底销售利润总和,再与总投资额比较即可【小问1详解】设第n年的销售量为万辆,则该汽车的年销售量构成首项为10,公差为10的等差数列,所以,设第n年每辆车的平均销售利润为元,则每辆汽车的平均销售利润构成首项为3000,公比为0.9的等比数列,所以,记第n年的销售利润为,则万元;即第n年的销售利润为亿元【小问2详解】到2027年年底,设销售利润总和为S亿元,则①,②,①﹣②得亿元,而总投资为亿元,因为,则到2027年年底,该集团能通过该品牌汽车实现盈利20、(1);(2)-1.【解析】(1)根据椭圆的性质进行求解即可;(2)根据直线的方程,结合平面向量数量积的坐标表示公式进行求解即可.【小问1详解】由题意得,,,所以,椭圆.【小问2详解】由题意可知,,设,则,直线,直线分别令得,,,.【点睛】关键点睛:运用平面向量数量积的坐标表示公式进行求解是解题的关键.21、(1)证明见详解(2)证明见详解【解析】利用函数奇偶性的定义证明即可【小问1详解】由题意函数定义域为且故是上的偶函数【小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江苏南京六合科技创业投资发展有限公司招聘10人笔试参考题库附带答案详解
- 国家奖学金答辩10
- 2024年度天津市护师类之主管护师模拟预测参考题库及答案
- 2024年度四川省护师类之护师(初级)练习题及答案
- 路南区电梯安全管理人员资质认证试题资料库以及答案
- 中央档案馆国家档案局所属事业单位招聘工作人员笔试真题2024
- 2025国家电网有限公司信息通信分公司高校毕业生招聘(第二批)笔试参考题库附带答案详解
- 七年级语文下册 第六单元 综合性学习 我的语文生活教学设计 新人教版
- 汽车维修行业安全知识普及试题及答案
- 2025中国铁建公开招聘42人笔试参考题库附带答案详解
- GB/T 242-2007金属管扩口试验方法
- GB/T 16921-2005金属覆盖层覆盖层厚度测量X射线光谱方法
- GB/T 11168-2009光学系统像质测试方法
- 新教材高中历史必修中外历史纲要上全册教学课件
- 公共部门人力资源管理概论课件
- 六年级下册科学第一单元质量检测卷粤教版(含答案)
- 【计算机应用基础试题】韩山师范大学2022年练习题汇总(附答案解析)
- 爱爱医资源-生理学-122排卵、黄体形成与月经周期
- 科技小巨人工程验收培训
- 大班绘本教案《月亮冰激凌》
- 火力发电厂运煤设计规程
评论
0/150
提交评论