版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年新疆昌吉玛纳斯县第一中学数学高二上期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列满足,,在()A.25 B.30C.32 D.642.从某个角度观察篮球(如图甲),可以得到一个对称的平面图形,如图乙所示,篮球的外轮廓为圆,将篮球表面的粘合线视为坐标轴和双曲线,若坐标轴和双曲线与圆的交点将圆的周长八等分,且,则该双曲线的离心率为()A. B.C.2 D.3.中国历法推测遵循以测为辅,以算为主的原则.例如《周髀算经》里对二十四节气的晷影长的记录中,冬至和夏至的晷影长是实测得到的,其它节气的晷影长则是按照等差数列的规律计算得出的.二十四节气中,从冬至到夏至的十三个节气依次为:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种、夏至.已知《周髀算经》中记录某年的冬至的晷影长为13尺,夏至的晷影长是1.48尺,按照上述规律,那么《周髀算经》中所记录的立夏的晷影长应为()A.尺 B.尺C.尺 D.尺4.已知双曲线,其中一条渐近线与x轴的夹角为,则双曲线的渐近线方程是()A. B.C. D.5.已知数列的首项为,且,若,则的取值范围是()A. B.C. D.6.设平面的法向量为,平面的法向量为,若,则的值为()A.-5 B.-3C.1 D.77.已知抛物线C:,则过抛物线C的焦点,弦长为整数且不超过2022的直线的条数是()A.4037 B.4044C.2019 D.20228.已知等差数列的前项和为,若,则()A B.C. D.9.设变量,满足约束条件,则的最大值为()A.1 B.6C.10 D.1310.1202年,意大利数学家斐波那契出版了他的《算盘全书》.他在书中收录了一些有意思的问题,其中有一个关于兔子繁殖的问题:如果1对兔子每月生1对小兔子(一雌一雄),而每1对小兔子出生后的第3个月里,又能生1对小兔子,假定在不发生死亡的情况下,如果用Fn表示第n个月的兔子的总对数,则有(n>2),.设数列{an}满足:an=,则数列{an}的前36项和为()A.11 B.12C.13 D.1811.已知三棱锥O—ABC,点M,N分别为线段AB,OC的中点,且,,,用,,表示,则等于()A. B.C. D.12.若“”是“”的充分不必要条件,则实数m的值为()A.1 B.C.或1 D.或二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若在上是增函数,则实数的取值范围是________14.已知函数是函数的导函数,,对任意实数都有,则不等式的解集为___________.15.下图是个几何体的展开图,图①是由个边长为的正三角形组成;图②是由四个边长为的正三角形和一个边长为的正方形组成;图③是由个边长为的正三角形组成;图④是由个边长为的正方形组成.若几何体能够穿过直径为的圆,则该几何体的展开图可以是______(填所有正确结论的序号).16.已知斜率为1的直线经过椭圆的左焦点,且与椭圆交于,两点,若椭圆上存在点,使得的重心恰好是坐标原点,则椭圆的离心率______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)[79.5,89.5)这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛的众数、中位数、平均数是多少?18.(12分)在等比数列中,是与的等比中项,与的等差中项为6(1)求的通项公式;(2)设,求数列前项和19.(12分)某公司有员工人,对他们进行年龄和学历情况调查,其结果如下:现从这名员工中随机抽取一人,设“抽取的人具有本科学历”,“抽取的人年龄在岁以下”,试求:(1);(2);(3).20.(12分)已知椭圆C的中心在原点,焦点在x轴上,焦距为2,离心率为(1)求椭圆C的方程;(2)设直线l经过点M(0,1),且与椭圆C交于A,B两点,若,求直线l的方程21.(12分)已知函数.(1)当时,求的极值;(2)当时,,求a的取值范围.22.(10分)(1)若在是减函数,求实数m的取值范围;(2)已知函数在R上无极值点,求a的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题中条件,得出数列公差,进而可求出结果.【详解】由得,所以数列是以为公差的等差数列,又,所以.故选:A.【点睛】本题主要考查等差数列的基本量运算,属于基础题型.2、B【解析】设出双曲线方程,把双曲线上的点的坐标表示出来并代入到方程中,找到的关系即可求解.【详解】以O为原点,AD所在直线为x轴建系,不妨设,则该双曲线过点且,将点代入方程,故离心率为,故选:B【点睛】本题考查已知点在双曲线上求双曲线离心率的方法,属于基础题目3、B【解析】根据等差数列定义求得公差,再求解立夏的晷影长在数列中所对应的项即可【详解】设从冬至到夏至的十三个节气依次为等差数列的前13项,则所以公差为,则立夏的晷影长应为(尺)故选:B4、C【解析】由已知条件计算可得,即得到结果.【详解】由双曲线,可知渐近线方程为,又双曲线的一条渐近线与x轴的夹角为,故,即渐近线方程为.故选:C5、C【解析】由题意,得到,利用叠加法求得,结合由,转化为恒成立,分,和三种情况讨论,即可求解.【详解】因为,可得,所以,所以,各式相加可得,所以,由,可得恒成立,整理得恒成立,当时,,不等式可化为恒成立,所以;当时,,不等式可化为恒成立;当时,,不等式可化为恒成立,所以,综上可得,实数的取值范围是.故选:C.6、C【解析】根据,可知向量建立方程求解即可.【详解】由题意根据,可知向量,则有,解得.故选:C7、A【解析】根据已知条件,结合抛物线的性质,先求出过焦点的最短弦长,再结合抛物线的对称性,即可求解【详解】∵抛物线C:,即,由抛物线的性质可得,过抛物线焦点中,长度最短的为垂直于y轴的那条弦,则过抛物线C的焦点,长度最短的弦的长为,由抛物线的对称性可得,弦长在5到2022之间的有共有条,故弦长为整数且不超过2022的直线的条数是故选:A8、B【解析】利用等差数列的性质可求得的值,再结合等差数列求和公式以及等差中项的性质可求得的值.【详解】由等差数列的性质可得,则,故.故选:B.9、C【解析】画出约束条件表示的平面区域,将变形为,可得需要截距最小,观察图象,可得过点时截距最小,求出点A坐标,代入目标式即可.【详解】解:画出约束条件表示的平面区域如图中阴影部分:又,即,要取最大值,则在轴上截距要最小,观察图象可得过点时截距最小,由,得,则.故选:C.10、B【解析】由奇数+奇数=偶数,奇数+偶数=奇数可知,数列{Fn}中F3,F6,F9,F12,,F3n为偶数,其余项都为奇数,再根据an=,即可求出数列{an}的前36项和【详解】由奇数+奇数=偶数,奇数+偶数=奇数可知,数列{Fn}中F3,F6,F9,F12,,F3n为偶数,其余项都为奇数,∴前36项共有12项为偶数,∴数列{an}的前36项和为12×1+24×0=12.故选:B11、A【解析】利用空间向量基本定理进行计算.【详解】.故选:A12、B【解析】利用定义法进行判断.【详解】把代入,得:,解得:或.当时,可化为:,解得:,此时“”是“”的充要条件,应舍去;当时,可化为:,解得:或,此时“”是“”的充分不必要条件.故.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据函数在上是增函数,分段函数在整个定义域内单调,则在每个函数内单调,注意衔接点的函数值.【详解】解:因为函数在上是增函数,所以在区间上是增函数且在区间上也是增函数,对于函数在上是增函数,则;①对于函数,(1)当时,,外函数为定义域内的减函数,内函数在上是增函数,根据复合函数“同增异减”可得时函数在区间上是减函数,不符合题意,故舍去,(2)当时,外函数为定义域内的增函数,要使函数在区间上是增函数,则内函数在上也是增函数,且对数函数真数大于0,即在上也要恒成立,所以,又,所以,②又在上是增函数则在衔接点处函数值应满足:,化简得,③由①②③得,,所以实数的取值范围是.故答案为:.【点睛】方法点睛:利用单调性求参数方法如下:(1)依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较;(2)需注意若函数在区间上是单调的,则该函数在此区间的任意子集上也是单调的;(3)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值14、【解析】令则,∴在R上是减函数又等价于∴故不等式的解集是答案:点睛:本题考查用构造函数的方法解不等式,即通过构造合适的函数,利用函数的单调性求得不等式的解集,解题时要注意常见的函数类型,如在本题中由于涉及到,故可从以下两种情况入手解决:(1)对于,可构造函数;(2)对于,可构造函数15、①【解析】根据几何体展开图可知①正四面体、②正四棱锥、③正八面体、④正方体,进而求其外接球半径,并与比较大小,即可确定答案.【详解】①由题设,几何体为棱长为的正四面体,该正四面体可放入一个正方体中,且正方体的棱长为,该正四面体的外接球半径为,满足要求;②由题设,几何体为棱长为的正四棱锥,如下图所示:设,连接,则为、的中点,因为四边形是边长为的正方形,则,所以,,所以,,所以,,,所以点为正四棱锥的外接球球心,且该球的半径为,不满足要求;③由题设,几何体为棱长为的正八面体,该正八面体可由两个共底面,且棱长均为的正四棱锥拼接而成,由②可知,该正八面体的外接球半径为,不满足要求;④由题设,几何体为棱长为的正方体,其外接球半径为,不满足要求;故答案为:①.16、【解析】设点,,坐标分别为,则根据题意有,分别将点,,的坐标代入椭圆方程得,然后联立直线与椭圆方程,利用韦达定理得到和的值,代入得到关于的齐次式,然后解出离心率.【详解】设,,坐标分别为,因为的重心恰好是坐标原点,则,则,代入椭圆方程可得,其中,所以……①因为直线的斜率为,且过左焦点,则的方程为:,联立方程消去可得:,所以,……②所以……③,将②③代入①得,从而.故答案为:【点睛】本题考查椭圆的离心率求解问题,难度较大.解答时,注意,,三点坐标之间的关系,注意韦达定理在解题中的运用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)0.25,15;(2)众数为74.5,中位数为72.8,平均分为70.5.【解析】(1)直接利用频率和频数公式求解;(2)利用频率分布直方图的公式求众数、中位数、平均数.【详解】(1)频率=(89.5-79.5)×0.025=0.25;频数=60×0.25=15.(2)[69.5,79.5)一组的频率最大,人数最多,则众数为74.5,左边三个矩形的面积和为0.4,左边四个矩形的面积和为0.7,所以中位数在第4个矩形中,设中位数为,所以中位数为72.8.平均分为44.5×0.1+54.5×0.15+64.5×0.15+74.5×0.3+84.5×0.25+94.5×0.05=70.518、(1);(2).【解析】(1)设出等比数列的公比,根据给定条件列出方程求解作答.(2)由(1)的结论求出,再利用分组求和法计算作答.【小问1详解】设等比数列公比为,依题意,,即,解得,所以的通项公式【小问2详解】由(1)知,,.19、(1);(2);(3).【解析】(1)利用古典概型的概率公式可求得;(2)利用古典概型的概率公式和对立事件的概率公式可求得;(3)利用古典概型的概率公式可求得所求事件的概率.【小问1详解】解:由表格中的数据可得.【小问2详解】解:由表格中的数据可得,所以.【小问3详解】解:可知即岁以下且专科学历,所以.20、(1);(2)或【解析】(1)根据椭圆的焦距为2,离心率为,求出,,即可求椭圆的方程;(2)设直线方程为,代入椭圆方程,由得,利用韦达定理,化简可得,求出,即可求直线的方程.试题解析:(1)设椭圆方程为,因为,所以,所求椭圆方程为.(2)由题得直线l的斜率存在,设直线l方程为y=kx+1,则由得,且.设,则由得,又,所以消去得,解得,,所以直线的方程为,即或.21、(1)极大值,没有极小值(2)【解析】(1)把代入,然后对函数求导,结合导数可求函数单调区间,即可得解;(2)构造函数,将不等式的恒成立转化为函数的最值问题,结合导数与单调性及函数的性质对进行分类讨论,其中当和时易判断函数的单调性以及最小值,而当时,的最小值与0进一步判断【小问1详解】当时,的定义域为,.当时,,当时,,所以在上为增函数,在上为减函数.故有极大值,没有极小值.【小问2详解】当时,恒成立等价于对于任意恒成立.令,则.若,则,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版港口工程保险合同3篇
- 二零二五版涵洞工程环保监测合同3篇
- 二零二五版反担保合同模板:供应链金融3篇
- 二零二五年计时工劳动合同管理与心理关怀协议3篇
- 二零二五年度软件开发项目合同及其廉洁规定2篇
- 二零二五版教育SaaS平台软件服务合同3篇
- 二零二五版粉煤灰运输安全规范与应急预案编制合同3篇
- 二零二五年度特种饲料原料采购合同模板2篇
- 二零二五年防火墙安全防护系统集成与维护合同3篇
- 二零二五年度大数据中心建设与运营劳务分包合同3篇
- 2024版塑料购销合同范本买卖
- 【高一上】【期末话收获 家校话未来】期末家长会
- JJF 2184-2025电子计价秤型式评价大纲(试行)
- 二年级下册加减混合竖式练习360题附答案
- 2021年道路交通安全法期末考试试题含答案
- 股东变更情况报告表
- 自带药物治疗告知书
- 房产中介门店6S管理规范
- 吞咽解剖和生理研究
- TSG11-2020 锅炉安全技术规程
- 异地就医备案个人承诺书
评论
0/150
提交评论