2023-2024学年河南省漯河市漯河实验高中数学高二上期末教学质量检测模拟试题含解析_第1页
2023-2024学年河南省漯河市漯河实验高中数学高二上期末教学质量检测模拟试题含解析_第2页
2023-2024学年河南省漯河市漯河实验高中数学高二上期末教学质量检测模拟试题含解析_第3页
2023-2024学年河南省漯河市漯河实验高中数学高二上期末教学质量检测模拟试题含解析_第4页
2023-2024学年河南省漯河市漯河实验高中数学高二上期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年河南省漯河市漯河实验高中数学高二上期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知的周长为,顶点、的坐标分别为、,则点的轨迹方程为()A. B.C. D.2.阿波罗尼斯约公元前年证明过这样一个命题:平面内到两定点距离之比为常数且的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A,B间的距离为2,动点P与A,B距离之比满足:,当P、A、B三点不共线时,面积的最大值是()A. B.2C. D.3.已知圆C的方程为,点P在圆C上,O是坐标原点,则的最小值为()A.3 B.C. D.4.椭圆上的一点M到其左焦点的距离为2,N是的中点,则等于()A.1 B.2C.4 D.85.已知,则“”是“”的()A.充分不必要条件 B.充要条件C.必要不充分条件 D.既不充分也不必要条件6.若曲线的一条切线与直线垂直,则的方程为()A. B.C. D.7.下列关于抛物线的图象描述正确的是()A.开口向上,焦点为 B.开口向右,焦点为C.开口向上,焦点为 D.开口向右,焦点为8.已知圆,圆,则两圆的公切线的条数为()A.1 B.2C.3 D.49.在平面内,A,B是两个定点,C是动点,若,则点C的轨迹为()A.圆 B.椭圆C.抛物线 D.直线10.已知则是的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.两个圆和的位置是关系是()A.相离 B.外切C.相交 D.内含12.已知圆柱的表面积为定值,当圆柱的容积最大时,圆柱的高的值为()A.1 B.C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.若数列满足,则称为“追梦数列”.已知数列为“追梦数列”,且,则数列的通项公式__________.14.在正方体中,,,P,F分别是线段,的中点,则点P到直线EF的距离是___________.15.曲线在点处的切线方程为_____________________.16.已知函数的单调递减区间是,则的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设等比数列的前项和为,且()(1)求数列的通项公式;(2)在与之间插入个实数,使这个数依次组成公差为的等差数列,设数列的前项和为,求证:18.(12分)设数列满足,数列的前项和为,且(1)求证:数列为等差数列,并求的通项公式;(2)设,若对任意正整数,当时,恒成立,求实数的取值范围.19.(12分)已知抛物线:,直线过定点.(1)若与仅有一个公共点,求直线的方程;(2)若与交于A,B两点,直线OA,OB(其中О为坐标原点)的斜率分别为,,试探究在,,,中,运算结果是否有为定值的?并说明理由.20.(12分)已知公差不为0的等差数列,前项和为,首项为,且成等比数列.(1)求和;(2)设,记,求.21.(12分)奋发学习小组共有3名学生,在某次探究活动中,他们每人上交了1份作业,现各自从这3份作业中随机地取出了一份作业.(1)每个学生恰好取到自己作业的概率是多少?(2)每个学生不都取到自己作业的概率是多少?(3)每个学生取到的都不是自己作业的概率是多少?22.(10分)在平面直角坐标系中,已知点,轴于点,是线段上的动点,轴于点,于点,与相交于点.(1)判断点是否在抛物线上,并说明理由;(2)过点作抛物线的切线交轴于点,过抛物线上的点作抛物线的切线交轴于点,……,以此类推,得到数列,求,及数列的通项公式.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分析可知点的轨迹是除去长轴端点的椭圆,求出、的值,结合椭圆焦点的位置可得出顶点的轨迹方程.【详解】由已知可得,,且、、三点不共线,故点的轨迹是以、为焦点,且除去长轴端点的椭圆,由已知可得,得,,则,因此,点的轨迹方程为.故选:D.2、C【解析】根据给定条件建立平面直角坐标系,求出点P的轨迹方程,探求点P与直线AB的最大距离即可计算作答.【详解】依题意,以线段AB的中点为原点,直线AB为x轴建立平面直角坐标系,如图,则,,设,因,则,化简整理得:,因此,点P的轨迹是以点为圆心,为半径的圆,点P不在x轴上时,与点A,B可构成三角形,当点P到直线(轴)的距离最大时,的面积最大,显然,点P到轴的最大距离为,此时,,所以面积的最大值是故选:C3、B【解析】化简判断圆心和半径,利用圆的性质判断连接线段OC,交圆于点P时最小,再计算求值即得结果.【详解】化简得圆C的标准方程为,故圆心是,半径,则连接线段OC,交圆于点P时最小,因为原点到圆心的距离,故此时.故选:B.4、C【解析】先利用椭圆定义得到,再利用中位线定理得即可.【详解】由椭圆方程,得,由椭圆定义得,又,,又为的中点,为的中点,线段为中位线,∴.故选:C.5、B【解析】求得中的取值范围,由此确定充分、必要条件.【详解】,,所以“”是“”的充要条件.故选:B6、A【解析】两直线垂直,斜率之积为,曲线与直线相切,联立方程令.【详解】法一:直线,所以,所以切线的,设切线的方程为,联立方程,所以,令,解得,所以切线方程为.法二:直线,所以,所以切线的,,所以令,所以,带入曲线方程得切点坐标为,所以切线方程为,化简得.故选:A.7、A【解析】把化成抛物线标准方程,依据抛物线几何性质看开口方向,求其焦点坐标即可解决.【详解】,即.则,即故此抛物线开口向上,焦点为故选:A8、B【解析】根据圆的方程,求得圆心距和两圆的半径之和,之差,判断两圆的位置关系求解.【详解】因为圆,圆,所以,,所以,所以两圆相交,所以两圆的公切线的条数为2,故选:B9、A【解析】首先建立平面直角坐标系,然后结合数量积定义求解其轨迹方程即可.【详解】设,以AB中点为坐标原点建立如图所示的平面直角坐标系,则:,设,可得:,从而:,结合题意可得:,整理可得:,即点C的轨迹是以AB中点为圆心,为半径的圆.故选:A.【点睛】本题主要考查平面向量及其数量积的坐标运算,轨迹方程的求解等知识,意在考查学生的转化能力和计算求解能力.10、A【解析】先解不等式,再比较集合包含关系确定选项.【详解】因为,所以是的充分不必要条件,选A.【点睛】本题考查解含绝对值不等式、解一元二次不等式以及充要关系判定,考查基本分析求解能力,属基础题.11、C【解析】根据圆的方程得出两圆的圆心和半径,再得出圆心距离与两圆的半径的关系,可得选项.【详解】圆的圆心为,半径,的圆心为,半径,则,所以两圆的位置是关系是相交,故选:C.【点睛】本题考查两圆的位置关系,关键在于运用判定两圆的位置关系一般利用几何法.即比较圆心之间的距离与半径之和、之差的大小关系,属于基础题.12、B【解析】设圆柱的底面半径为,则圆柱底,圆柱侧,则可得,则圆柱的体积为,利用导数求出最大值,确定值.【详解】设圆柱的底面半径为,则圆柱底,圆柱侧,∴,∴,则圆柱的体积,∴,由得,由得,∴当时,取极大值,也是最大值,即故选:B【点睛】本题主要考查了圆柱表面积和体积的计算,考查了导数的实际应用,考查了学生的应用意识.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】根据题意,由“追梦数列”的定义可得“追梦数列”是公比为的等比数列,进而可得若数列为“追梦数列”,则为公比为3的等比数列,进而由等比数列的通项公式可得答案【详解】根据题意,“追梦数列”满足,即,则数列是公比为的等比数列.若数列为“追梦数列”,则.故答案为:.14、【解析】以A为坐标原点建立空间直角坐标系,利用向量法即可求解点P到直线EF的距离.【详解】解:如图,以A为坐标原点,,,的方向分别为x,y,z轴的正方向,建立空间直角坐标系,因为,所以,,,所以,,所以点P到直线EF的距离.故答案为:.15、【解析】首先判定点在曲线上,然后利用导数的几何意义求得答案.【详解】由题意可知点在曲线上,而,故曲线在点处的切线斜率为,所以切线方程:,即,故答案为:16、【解析】先求出,由题设易知是的解集,利用根与系数关系求m、n,进而求的值.【详解】由题设,,由单调递减区间是,∴的解集为,则是的解集,∴,可得,故.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】(1)由两式相减得,所以()因为等比,且,所以,所以故(2)由题设得,所以,所以,则,所以18、(1)证明见解析,;(2)或.【解析】(1)结合与关系用即可证明为常数;求出通项公式后利用累加法即可求的通项公式;(2)裂项相消求,判断单调性求其最大值即可.【小问1详解】当时,得到,∴,当时,是以4为首项,2为公差的等差数列∴当时,当时,也满足上式,.【小问2详解】令,当,因此的最小值为,的最大值为对任意正整数,当时,恒成立,得,即在时恒成立,,解得t<0或t>3.19、(1)或或(2)为定值,而,,均不为定值【解析】(1)过抛物线外一定点的直线恰好与该抛物线只有一个交点,则分两类分别讨论,一是直线与抛物线的对称轴平行,二是直线与抛物线相切;(2)联立直线的方程与抛物线的方程,根据韦达定理,分别表示出,,,为直线斜率的形式,便可得出结果.【小问1详解】过点的直线与抛物线仅有一个公共点,则该直线可能与抛物线的对称轴平行,也可能与抛物线相切,下面分两种情况讨论:当直线可能与抛物线的对称轴平行时,则有:当直线与抛物线相切时,由于点在轴上方,且在抛物线外,则存在两条直线与抛物线相切:易知:是其中一条直线另一条直线与抛物线上方相切时,不妨设直线的斜率为,则有:联立直线与抛物线可得:可得:则有:解得:故此时的直线的方程为:综上,直线的方程为:或或【小问2详解】若与交于A,B两点,分别设其坐标为,,且由(1)可知直线要与抛物线有两个交点,则直线的斜率存在且不为,不妨设直线的斜率为,则有:联立直线与抛物线可得:可得:,即有:根据韦达定理可得:,则有:,下面分别说明各项是否为定值:,故运算结果为定值;,故运算结果不为定值;,故运算结果不为定值;,故运算结果不为定值.综上,可得:为定值,而,,均不为定值20、(1)(2)【解析】(1)由题意解得等差数列的公差,代入公式即可求得和;(2)把n分为奇数和偶数两类,分别去数列的前n项和.【小问1详解】设等差数列公差为,由题有,即,解之得或0,又,所以,所以.【小问2详解】,当为正奇数,,当为正偶数,,所以21、(1)(2)(3)【解析】(1)根据列举法列出所有的可能基本事件,进而得出每个学生恰好拿到自己作业的概率;(2)利用对立事件的概念即可求得结果;(3)结合(1)即可得出每个学生拿的都不是自己作业的事件数.【小问1详解】设这三个学生分别为A、B、C,A的作业为a,B的作业为b,C的作业为c,则基本事件为:,则基本事件总数为6,设每个学生恰好拿到自己作业为事件E,事件E包含的事件数为l,所以;小问2详解】设每个学生不都拿到自己作业为事件F,因为事件F的对立事件为E,所以;【小问3详解】设每个学生拿的都不是自己作业为事件G,事件G包含的事件数为2,.22、(1)在抛物线上,理由见解析(2),,.【解析】(1)根据直线的方程设出点的坐标,利用已知条件求出点的坐标即可判断点是否在抛物线上;(2)设出直线的直线方程,与抛物线联立,令,即可求出,同理可以求出,设出直线的直线方程,与抛物线联立,令即可求出的方程,若令,,即,故数列

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论