版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年甘肃省玉门市玉门一中高二数学第一学期期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.入冬以来,梁老师准备了4个不同的烤火炉,全部分发给楼的三个办公室(每层楼各有一个办公室).1,2楼的老师反映办公室有点冷,所以1,2楼的每个办公室至少需要1个烤火队,3楼老师表示不要也可以.则梁老师共有多少种分发烤火炉的方法()A.108 B.36C.50 D.862.曲线上存在两点A,B到直线到距离等于到的距离,则()A.12 B.13C.14 D.153.已知等比数列的公比为正数,且,,则()A.4 B.2C.1 D.4.若抛物线的焦点与椭圆的下焦点重合,则m的值为()A.4 B.2C. D.5.将一枚骰子先后抛掷两次,若先后出现的点数分别记为a,b,则直线到原点的距离不超过1的概率是()A. B.C. D.6.双曲线的离心率的取值范围为,则实数的取值范围为()A. B.C. D.7.的内角A,B,C的对边分别为a,b,c,若,则一定是()A.等边三角形 B.等腰三角形C.直角三角形 D.等腰直角三角形8.已知抛物线的方程为,则此抛物线的准线方程为()A. B.C. D.9.已知双曲线上的点到的距离为15,则点到点的距离为()A.7 B.23C.5或25 D.7或2310.已知椭圆的左、右焦点分别为,,焦距为,过点作轴的垂线与椭圆相交,其中一个交点为点(如图所示),若的面积为,则椭圆的方程为()A B.C. D.11.下列语句为命题的是()A. B.你们好!C.下雨了吗? D.对顶角相等12.在等比数列中,,,则等于()A.90 B.30C.70 D.40二、填空题:本题共4小题,每小题5分,共20分。13.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”,即将军在观望烽火之后从山脚下某处出发,先到河边饮马再回到军营,怎样走才能使总路程最短?在如图所示的直角坐标系xOy中,设军营所在平面区域为{(x,y)|x2+y2≤},河岸线所在直线方程为x+2y-4=0.假定将军从点P(,)处出发,只要到达军营所在区域即回到军营,当将军选择最短路程时,饮马点A的纵坐标为______.最短总路程为______14.在圆M:中,过点的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为___________.15.已知,求_____________.16.数学家华罗庚说:“数缺形时少直观,形少数时难入微”,事实上,很多代数问题可以转化为几何问题加以解决.例如:与相关的代数问题,可以转化为点与点之间的距离的几何问题.结合上述观点:对于函数,的最小值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,正方体的棱长为,分别是的中点,点在棱上,().(Ⅰ)三棱锥的体积分别为,当为何值时,最大?最大值为多少?(Ⅱ)若平面,证明:平面平面.18.(12分)已知曲线C的方程为(1)判断曲线C是什么曲线,并求其标准方程;(2)过点的直线l交曲线C于M,N两点,若点P为线段MN的中点,求直线l的方程19.(12分)已知函数(1)讨论函数的单调性;(2)若函数有两个零点,,证明:20.(12分)已知椭圆的离心率为,直线与椭圆C相切于点(1)求椭圆C方程;(2)已知直线与椭圆C交于不同的两点M,N,与直线交于点Q(P,Q,M,N均不重合),记的斜率分别为,若①求△面积的范围,②证明:为定值21.(12分)随着生活条件的改善,人们健身意识的增强,健身器械比较畅销,某商家为了解某种健身器械如何定价可以获得最大利润,现对这种健身器械进行试销售.统计后得到其单价x(单位:百元)与销量y(单位:个)的相关数据如下表:单价x(百元/个)3035404550日销售量y(个)1401301109080(1)已知销量y与单价x具有线性相关关系,求y关于x的线性回归方程;(2)若每个健身器械的成本为25百元,试销售结束后,请利用(1)中所求的线性回归方程确定单价为多少百元时,销售利润最大?(结果保留到整数),附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.参考数据:.22.(10分)已知二项式的展开式中各二项式系数之和比各项系数之和小240.求:(1)n的值;(2)展开式中x项的系数;(3)展开式中所有含x的有理项
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】运用分类计数原理,结合组合数定义进行求解即可.【详解】当3楼不要烤火炉时,不同的分发烤火炉的方法为:;当3楼需要1个烤火炉时,不同的分发烤火炉的方法为:;当3楼需要2个烤火炉时,不同的分发烤火炉的方法为:,所以分发烤火炉的方法总数为:,故选:C【点睛】关键点睛:运用分类计数原理是解题的关键.2、D【解析】由题可知A,B为半圆C与抛物线的交点,利用韦达定理及抛物线的定义即求.【详解】由曲线,可得,即,为圆心为,半径为7半圆,又直线为抛物线的准线,点为抛物线的焦点,依题意可知A,B为半圆C与抛物线的交点,由,得,设,则,,∴.故选:D.3、D【解析】设等比数列的公比为(),则由已知条件列方程组可求出【详解】设等比数列的公比为(),由题意得,且,即,,因为,所以,,故选:D4、D【解析】求出椭圆的下焦点,即抛物线的焦点,即可得解.【详解】解:椭圆的下焦点为,即为抛物线焦点,∴,∴.故选:D.5、C【解析】先由条件得出a,b满足,得出满足的基本事件数,再求出总的基本事件数,从而可得答案.【详解】直线到原点的距离不超过1,则所以当时,可以为5,6当时,可以为4,5,6当时,可以为4,5,6当时,可以为2,3,4,5,6当时,可以为1,2,3,4,5,6当时,可以为1,2,3,4,5,6满足的共有25种结果.将一枚骰子先后抛掷两次,若先后出现的点数分别记为a,b,共有种结果所以满足条件的概率为故选:C6、C【解析】分析可知,利用双曲线的离心率公式可得出关于的不等式,即可解得实数的取值范围.【详解】由题意有,,则,解得:故选:C.7、B【解析】利用余弦定理化角为边,从而可得出答案.【详解】解:因为,所以,则,所以,所以是等腰三角形.故选:B.8、A【解析】由抛物线的方程直接写出其准线方程即可.【详解】由抛物线的方程为,则其准线方程为:故选:A9、D【解析】根据双曲线的定义知,,即可求解.【详解】由题意,双曲线,可得焦点坐标,根据双曲线的定义知,,而,所以或故选:D【点睛】本题主要考查了双曲线的定义及其应用,其中解答中熟记双曲线的定义,列出方程是解答的关键,着重考查推理与运算能力,属于基础题.10、A【解析】由题意可得,令,可得,再由三角形的面积公式,解方程可得,,即可得到所求椭圆的方程【详解】由题意可得,即,即有,令,则,可得,则,即,解得,,∴椭圆的方程为故选:A11、D【解析】根据命题的定义判断即可.【详解】因为能够判断真假的语句叫作命题,所以ABC错误,D正确.故选:D12、D【解析】根据等比数列的通项公式即可求出答案.【详解】设该等比数列的公比为q,则,则.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】求出P(,)关于直线x+2y4=0对称点P'的坐标,再求出线段OP'与直线x+2y-4=0的交点A,再利用圆的几何性质可得结果.【详解】设P(,)关于直线x+2y4=0的对称点为P'(m,n),则解得因为从点P到军营总路程最短,所以A为线段OP'与直线x+2y4=0的交点,联立得y=(42y),解得y=.所以“将军饮马”的最短总路程为=,故答案为,.【点睛】本题主要考查对称问题以及圆的几何性质,属于中档题.解析几何中点对称问题,主要有以下三种题型:(1)点关于直线对称,关于直线的对称点,利用,且点在对称轴上,列方程组求解即可;(2)直线关于直线对称,利用已知直线与对称轴的交点以及直线上特殊点的对称点(利用(1)求解),两点式求对称直线方程;(3)曲线关于直线对称,结合方法(1)利用逆代法求解.14、【解析】首先将圆的方程配成标准式,即可得到圆心坐标与半径,从而可得点在圆内,即可得到过点的最长弦、最短弦弦长,即可求出四边形的面积;【详解】解:圆M:,即,圆心,半径,点,则,所以点在圆内,所以过点的最长弦,又,所以最短弦,所以故答案为:15、【解析】根据导数的定义即可求解.【详解】,所以,故答案为:.16、【解析】根据题意得,表示点与点与距离之和的最小值,再找对称点求解即可.【详解】函数,表示点与点与距离之和的最小值,则点在轴上,点关于轴的对称点,所以,所以的最小值为:.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ),.(Ⅱ)见解析.【解析】(Ⅰ)由题可知,,由和,结合基本不等式可求最值;(Ⅱ)连接交于点,则为的中点,可得为中点,易证得,得平面,所以,进而可证得,,所以平面EFM,因为平面,从而得证.【详解】(Ⅰ)由题可知,,.所以(当且仅当,即时等号成立)所以当时,最大,最大值为.(Ⅱ)连接交于点,则为的中点,因为平面,平面平面,所以,所以为中点.连接,因为为中点,所以,因为,所以.因为平面,平面,所以,因为,所以平面,又平面,所以.同理,因为,所以平面EFM,因为平面,所以平面平面B1D1M.18、(1);(2).【解析】(1)根据椭圆的定义即可判断并求解;(2)根据点差法即可求解中点弦斜率和中点弦方程.【小问1详解】设,,E(x,y),∵,,且,点的轨迹是以,为焦点,长轴长为4的椭圆设椭圆C的方程为,记,则,,,,,曲线的标准方程为【小问2详解】根据椭圆对称性可知直线l斜率存在,设,则,由①-②得,,∴l:,即.19、(1)函数的单调性见解析;(2)证明见解析.【解析】(1)求出函数的导数,按a值分类讨论判断的正负作答.(2)将分别代入计算化简变形,再对所证不等式作等价变形,构造函数,借助函数导数推理作答.【小问1详解】已知函数的定义域为,,当时,恒成立,所以在区间上单调递增;当时,由,解得,由,解得,的单调递增区间为,单调递减区间为,所以,当时,在上单调递增,当时,在上单调递增,在上单调递减.【小问2详解】依题意,不妨设,则,,于是得,即,亦有,即,因此,,要证明,即证,即证,即证,即证,令,,,则有在上单调递增,,,即成立,所以.【点睛】思路点睛:涉及双变量的不等式证明问题,将所证不等式等价转化,构造新函数,再借助导数探讨函数的单调性、极(最)值问题处理.20、(1);(2)①;②证明见解析.【解析】(1)根据椭圆离心率和椭圆经过的点建立方程组,求解方程组可得椭圆的方程;(2)先根据相切求出直线的斜率,结合可得,进而应用弦长公式、点线距离公式及三角形面积公式求△面积的范围,再逐个求解,,然后可证结论.【小问1详解】由题意,解得,故椭圆C的方程为.【小问2详解】设直线为,联立得:,因为直线与椭圆C相切,则判别式,即,整理得,∴,故直线为,又,可得,设直线为,联立方程组,解得,故Q为,联立方程组,化简得设,由得:,且,①,到直线的距离为,∴,令,∴.②由上,故,于是为定值.【点睛】直线与椭圆的相切问题一般是联立方程,结合判别式为零求解;定值问题的求解一般结合目标式中的项,逐个求解,代入验证即可.21、(1);(2)确定单价为50百元时,销售利润最大.【解析】(1)根据参考公式和数据求出,进而求出线性回归方程;(2)设出定价,结合(1)求出利润,进而通过二次函数的性质求得答案.【小问1详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 直肠造瘘术后护理
- 高一安全伴我行课件
- 手术室工作流程漫画
- 下载安全培训教育课件
- 《临床技能大赛题目》课件
- 2024年度高速铁路信号系统升级合同2篇
- 2024年度工程合同技术服务的内容与标准
- 宫腔镜手术风险管理
- 2024年度二手装载机转让与购买之全面协议3篇
- 新任教师入职培训
- 大数据技术生涯发展报告
- EPC项目设计组织方案及各阶段计划进度安排
- 小程序运营方案
- 广东省深圳市两校2023-2024学年高二上学期期末联考数学试卷(含答案)
- 高一新生学习方法指导课件
- 参加美术教师培训心得体会(30篇)
- 国开电大可编程控制器应用实训形考任务1实训报告
- 2024领导力培训课程ppt完整版含内容
- 森林火灾中的自救与互救课件
- 数据新闻可视化
- 中学生应急救护知识讲座
评论
0/150
提交评论