![2023-2024学年福建省清流第一中学高二数学第一学期期末学业水平测试模拟试题含解析_第1页](http://file4.renrendoc.com/view/36ea11d0ed0d2ddaaffbf72c61cfdfb5/36ea11d0ed0d2ddaaffbf72c61cfdfb51.gif)
![2023-2024学年福建省清流第一中学高二数学第一学期期末学业水平测试模拟试题含解析_第2页](http://file4.renrendoc.com/view/36ea11d0ed0d2ddaaffbf72c61cfdfb5/36ea11d0ed0d2ddaaffbf72c61cfdfb52.gif)
![2023-2024学年福建省清流第一中学高二数学第一学期期末学业水平测试模拟试题含解析_第3页](http://file4.renrendoc.com/view/36ea11d0ed0d2ddaaffbf72c61cfdfb5/36ea11d0ed0d2ddaaffbf72c61cfdfb53.gif)
![2023-2024学年福建省清流第一中学高二数学第一学期期末学业水平测试模拟试题含解析_第4页](http://file4.renrendoc.com/view/36ea11d0ed0d2ddaaffbf72c61cfdfb5/36ea11d0ed0d2ddaaffbf72c61cfdfb54.gif)
![2023-2024学年福建省清流第一中学高二数学第一学期期末学业水平测试模拟试题含解析_第5页](http://file4.renrendoc.com/view/36ea11d0ed0d2ddaaffbf72c61cfdfb5/36ea11d0ed0d2ddaaffbf72c61cfdfb55.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年福建省清流第一中学高二数学第一学期期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若实数满足约束条件,则最小值为()A.-2 B.-1C.1 D.22.记为等差数列的前项和.若,,则的公差为()A.1 B.2C.4 D.83.我们通常称离心率是的椭圆为“黄金椭圆”.如图,已知椭圆,,,,分别为左、右、上、下顶点,,分别为左、右焦点,为椭圆上一点,下列条件中能使椭圆为“黄金椭圆”的是()A. B.C.轴,且 D.四边形的一个内角为4.在中,,,为所在平面上任意一点,则的最小值为()A.1 B.C.-1 D.-25.()A.-2 B.-1C.1 D.26.某企业甲车间有200人,乙车间有300人,现用分层抽样的方法在这两个车间中抽取25人进行技能考核,则从甲车间抽取的人数应为()A.5 B.10C.8 D.97.已知椭圆的一个焦点坐标为,则的值为()A. B.C. D.8.若直线先向右平移一个单位,再向下平移一个单位,然后与圆相切,则c的值为()A.8或-2 B.6或-4C.4或-6 D.2或-89.《周髀算经》中有这样一个问题:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,自冬至日起,其日影长依次成等差数列,立春当日日影长为9.5尺,立夏当日日影长为2.5尺,则冬至当日日影长为()A.12.5尺 B.13尺C.13.5尺 D.14尺10.已知在一次降雨过程中,某地降雨量(单位:mm)与时间t(单位:min)的函数关系可表示为,则在时的瞬时降雨强度为()mm/min.A. B.C.20 D.40011.已知函数,则的单调递增区间为().A. B.C. D.12.如图,平行六面体中,为的中点,,,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.知函数,若函数有两个不同的零点,则实数的取值范围为_____________.14.等差数列的前n项和分别为,若对任意正整数n都有,则的值为___________.15.曲线在处的切线方程为______.16.已知从某班学生中任选两人参加农场劳动,选中两人都是男生的概率是,选中两人都是女生的概率是,则选中两人中恰有一人是女生的概率为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知集合,.若,且“”是“”的充分不必要条件,求实数a的取值范围18.(12分)已知双曲线(1)若,求双曲线的焦点坐标、顶点坐标和渐近线方程;(2)若双曲线的离心率为,求实数的取值范围19.(12分)已知动圆过定点,且与直线相切.(1)求动圆圆心的轨迹的方程;(2)直线过点与曲线相交于两点,问:在轴上是否存在定点,使?若存在,求点坐标,若不存在,请说明理由.20.(12分)已知数列{an}的前n项和为Sn,.(1)求数列{an}通项公式;(2)求数列的前n项和,求使不等式成立的最大整数m的值.21.(12分)已知动点到点的距离与点到直线的距离相等.(1)求动点的轨迹方程;(2)若过点且斜率为的直线与动点的轨迹交于、两点,求三角形AOB的面积.22.(10分)已知双曲线的左、右焦点分别为,过作斜率为的弦.求:(1)弦的长;(2)△的周长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案【详解】由约束条件作出可行域如图,联立,解得,由,得,由图可知,当直线过时,直线在轴上的截距最小,有最小值为故选:B2、C【解析】根据等差数列的通项公式及前项和公式利用条件,列出关于与的方程组,通过解方程组求数列的公差.【详解】设等差数列的公差为,则,,联立,解得.故选:C.3、B【解析】先求出椭圆的顶点和焦点坐标,对于A,根据椭圆的基本性质求出离心率判断A;对于B,根据勾股定理以及离心率公式判断B;根据结合斜率公式以及离心率公式判断C;由四边形的一个内角为,即即三角形是等边三角形,得到,结合离心率公式判断D.【详解】∵椭圆∴对于A,若,则,∴,∴,不满足条件,故A不符合条件;对于B,,∴∴,∴∴,解得或(舍去),故B符合条件;对于C,轴,且,∴∵∴,解得∵,∴∴,不满足题意,故C不符合条件;对于D,四边形的一个内角为,即即三角形是等边三角形,∴∴,解得∴,故D不符合条件故选:B【点睛】本题主要考查了求椭圆离心率,涉及了勾股定理,斜率公式等的应用,充分利用建立的等式是解题关键.4、C【解析】以为建立平面直角坐标系,设,把向量的数量积用坐标表示后可得最小值【详解】如图,以为建立平面直角坐标系,则,设,,,,,∴,∴当时,取得最小值故选:C【点睛】本题考查向量的数量积,解题方法是建立平面直角坐标系,把向量的数量积转化为坐标表示5、A【解析】利用微积分基本定理计算得到答案.【详解】.故选:.【点睛】本题考查了定积分的计算,意在考查学生的计算能力.6、B【解析】根据分层抽样的定义即可求解.【详解】从甲车间抽取的人数为人故选:B7、B【解析】根据题意得到得到答案.【详解】椭圆焦点在轴上,且,故.故选:B.8、A【解析】求出平移后的直线方程,再利用直线与圆相切并借助点到直线距离公式列式计算作答.【详解】将直线先向右平移一个单位,再向下平移一个单位所得直线方程为,因直线与圆相切,从而得,即,解得或,所以c的值为8或-2.故选:A9、B【解析】设十二节气自冬至日起的日影长构成的等差数列为,利用等差数列的性质即可求解.【详解】设十二节气自冬至日起的日影长构成的等差数列为,则立春当日日影长为,立夏当日日影长为,故所以冬至当日日影长为.故选:B10、B【解析】对题设函数求导,再求时对应的导数值,即可得答案.【详解】由题设,,则,所以在时的瞬时降雨强度为mm/min.故选:B11、D【解析】利用导数分析函数单调性【详解】的定义域为,,令,解得故的单调递增区间为故选:D12、B【解析】先用向量与表示,然后用向量表示向量与,即可得解【详解】解:为的中点,故选:【点睛】本题考查了平面向量基本定理的应用,解决本题的关键是熟练运用向量的加法、减法及实数与向量的积的运算,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据分段函数的性质,结合幂函数、一次函数的单调性判断零点的分布,进而求m的范围.【详解】由解析式知:在上为增函数且,在上,时为单调函数,时无零点,故要使有两个不同的零点,即两侧各有一个零点,所以在上必递减且,则,可得.故答案为:14、##0.68【解析】利用等差数列求和公式与等差中项进行求解.【详解】由题意得:,同理可得:,所以故答案为:15、【解析】先求出函数的导函数,然后结合导数的几何意义求解即可.【详解】解:由,得,则,即当时,,所以切线方程为:,故答案为:.【点睛】本题考查了曲线在某点处的切线方程的求法,属基础题.16、【解析】记“选中两人都是男生”为事件,“选中两人都是女生”为事件,“选中两人中恰有一人是女生”为事件,根据为互斥事件,与为对立事件,从而可求出答案.【详解】记“选中两人都是男生”为事件,“选中两人都是女生”为事件,“选中两人中恰有一人是女生”为事件,易知为互斥事件,与为对立事件,又,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解析】由题设A是的真子集,结合已知集合的描述列不等式求a的范围.【详解】由“”是“”的充分不必要条件,即A是的真子集,又,,所以,可得,则实数a的取值范围为18、(1)焦点坐标为,,顶点坐标为,,渐近线方程为;(2).【解析】(1)根据双曲线方程确定,即可按照概念对应写出焦点坐标、顶点坐标和渐近线方程;(2)先求(用表示),再根据解不等式得结果.【详解】(1)当时,双曲线方程化为,所以,,,所以焦点坐标为,,顶点坐标为,,渐近线方程为.(2)因为,所以,解得,所以实数的取值范围是【点睛】本题根据双曲线方程求焦点坐标、顶点坐标和渐近线方程,根据离心率求参数范围,考查基本分析求解能力,属基础题.19、(1);(2)存在,.【解析】(1)利用两点间的距离公式和直线与圆相切的性质即可得出;(2)假设存在点,满足题设条件,设直线的方程,根据韦达定理即可求出点的坐标【小问1详解】设动圆的圆心,依题意:化简得:,即为动圆的圆心的轨迹的方程【小问2详解】假设存在点,满足条件,使①,显然直线斜率不为0,所以由直线过点,可设,由得设,,,,则,由①式得,,即消去,,得,即,,,存在点使得20、(1);(2).【解析】(1)根据给定的递推公式变形,再构造常数列求解作答.(2)利用(1)的结论求出,再利用裂项相消法求和,由单调性求出最大整数m值作答.【小问1详解】依题意,,当时,,两式相减得:,即,整理得:,于是得,所以数列{an}的通项公式是.【小问2详解】由(1)得,,数列是递增数列,因此,,于是有,则,不等式成立,则,,于是得,所以使不等式成立的最大整数m的值是505.【点睛】思路点睛:使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的21、(1)(2)【解析】小问1:由抛物线的定义可求得动点的轨迹方程;小问2:可知直线的方程为,设点、,将直线的方程与抛物线的方程联立,求出的值,利用抛物线的定义可求得的值,结合面积公式即可求解小问1详解】由题意点的轨迹是以为焦点,直线为准线的抛物线,所以,则,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水泥购销合同协议
- 环保水处理项目合作框架协议
- 学校食堂蔬菜采购合同
- 股份制企业的合同文书规范与管理
- 蔬菜种植合作的协议书(3篇)
- 两人合作合同
- 环保产业技术创新与应用合同
- 公司股权分配合同协议年
- 派遣合同就业协议书
- 人才委托协议
- 初一英语英语阅读理解专项训练15篇
- GB/T 4008-2024锰硅合金
- DZ∕T 0447-2023 岩溶塌陷调查规范(1:50000)(正式版)
- 2024年天津市中考英语试题卷(含答案)
- 《建筑施工图设计》课件-建筑施工图立面图
- 人教版四年级上册数学期末试卷(6套)
- FZ∕T 73037-2019 针织运动袜行业标准
- 16J914-1 公用建筑卫生间
- (完整版)机房安全检查表
- 精神疾病患者自杀风险评估与预防措施
- 山西省太原市2023-2024学年七年级下学期期中数学试题
评论
0/150
提交评论