




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年宁夏回族自治区银川市第一中学高二上数学期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.我国古代数学名著《算法统宗》中说:“九百九十六斤棉,赠分八子做盘缠,次第每人多十七,要将第八数来言,务要分明依次第,孝和休惹外人传.”意为:“996斤棉花,分别赠送给8个子女做旅费,从第一个孩子开始,以后每人依次多17斤,直到第8个孩子为止.分配时一定要依照次序分,要顺从父母,兄弟间和气,不要引得外人说闲话.”在这个问题中,第5个孩子分到棉花为()A.133斤 B.116斤C.99斤 D.65斤2.已知,,若,则实数的值为()A. B.C. D.23.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A. B.C. D.4.已知是双曲线的左、右焦点,点P在C上,,则等于()A.2 B.4C.6 D.85.若直线与直线垂直,则()A.6 B.4C. D.6.化学中,将构成粒子(原子、离子或分子)在空间按一定规律呈周期性重复排列构成的固体物质称为晶体.在结构化学中,可将晶体结构截分为一个个包含等同内容的基本单位,这个基本单位叫做晶胞.已知钙、钛、氧可以形成如图所示的立方体晶胞(其中Ti原子位于晶胞的中心,Ca原子均在顶点位置,O原子位于棱的中点).则图中原子连线BF与所成角的余弦值为()A. B.C. D.7.“椭圆的离心率为”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件8.已知数列满足,则满足的的最大取值为()A.6 B.7C.8 D.99.已知f(x)是定义在R上的偶函数,当时,,且f(-1)=0,则不等式的解集是()A. B.C. D.10.已知△的顶点B,C在椭圆上,顶点A是椭圆的一个焦点,且椭圆的另一个焦点在BC边上,则△的周长是()A. B.C.8 D.1611.已知在等比数列中,,,则()A.9或 B.9C.27或 D.2712.设变量满足约束条件:,则的最小值()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设函数的导函数为,已知函数,则______.14.已知椭圆,A,B是椭圆C上的两个不同的点,设,若,则直线AB的方程为______15.已知等差数列的前n项和为,,则___________.16.已知点P为椭圆上的任意一点,点,分别为该椭圆的左、右焦点,则的最大值为______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率,若不能,说明理由18.(12分)等差数列{an}的前n项和记为Sn,且.(1)求数列{an}的通项公式an(2)记数列的前n项和为Tn,若,求n的最小值.19.(12分)自我国爆发新冠肺炎疫情以来,各地医疗单位都加紧了医疗用品的生产.某医疗器械厂统计了口罩生产车间每名工人的生产速度,并将所得数据分成五组并绘制出如图所示的频率分布直方图.已知前四组的频率成等差数列,第五组与第二组的频率相等(1)估计口罩生产车间工人生产速度的中位数(结果写成分数的形式);(2)为了解该车间工人的生产速度是否与他们的工作经验有关,现从车间所有工人中随机抽样调查了5名工人的生产速度以及他们的工龄(参加工作的年限),数据如下表:工龄x(单位:年)4681012生产速度y(单位:件/小时)4257626267根据上述数据求每名工人的生产速度y关于他的工龄x的回归方程,并据此估计该车间某位有16年工龄的工人的生产速度附:回归方程中斜率和截距的最小二乘估计公式为:,20.(12分)冬奥会的全称是冬季奥林匹克运动会,是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在中国北京和张家口举行.为了弘扬奥林匹克精神,增强学生的冬奥会知识,广安市某中学校从全校随机抽取50名学生参加冬奥会知识竞赛,并根据这50名学生的竞赛成绩,绘制频率分布直方图(如图所示),其中样本数据分组区间(1)求频率分布直方图中a的值:(2)求这50名学生竞赛成绩的众数和中位数.(结果保留一位小数)21.(12分)已知直线,抛物线.(1)与有公共点,求的取值范围;(2)是坐标原点,过的焦点且与交于两点,求的面积.22.(10分)已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为(1)求椭圆的方程;(2)设直线与椭圆相交于不同的两点,已知点的坐标为,若,求直线的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据等差数列的前n项和公式、等差数列的通项公式进行求解即可.【详解】依题意得,八个子女所得棉花斤数依次构成等差数列,设该等差数列为,公差为d,前n项和为,第一个孩子所得棉花斤数为,则由题意得,,解得,故选:A2、D【解析】由,然后根据向量数量积的坐标运算即可求解.【详解】解:因,,所以,因为,所以,即,解得,故选:D.3、C【解析】根据题先求出阅读过西游记人数,进而得解.【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C【点睛】本题考查容斥原理,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题4、D【解析】根据双曲线定义写出,两边平方代入焦点三角形的余弦定理中即可求解【详解】双曲线,,所以,根据双曲线的对称性,可假设在第一象限,设,则,所以,,在中,根据余弦定理:,即,解得:,所以故选:D5、A【解析】由两条直线垂直的条件可得答案.【详解】由题意可知,即故选:A.6、C【解析】如图所示,以为坐标原点,所在的直线分别为轴,建立直角坐标系,设立方体的棱长为,求出的值,即可得到答案;【详解】如图所示,以为坐标原点,所在的直线分别为轴,建立直角坐标系,设立方体的棱长为,则,,,,连线与所成角的余弦值为故选:C.7、C【解析】讨论椭圆焦点的位置,根据离心率分别求出参数m,由充分必要性的定义判断条件间的充分、必要关系.【详解】当椭圆的焦点在轴上时,,得;当椭圆的焦点在轴上时,,得故“椭圆的离心率为”是“”的必要不充分条件故选:C.8、B【解析】首先地推公式变形,得,,求得数列的通项公式后,再解不等式.【详解】因为,两边取倒数,得,整理为:,,所以数列是首项为1,公差为4的等差数列,,,因为,即,得,解得:,,所以的最大值是7.故选:B9、D【解析】根据题意可知,当时,,即函数在上单调递增,再结合函数f(x)的奇偶性得到函数的奇偶性,并根据奇偶性得到单调性,进而解得答案.【详解】由题意,当时,,则函数在上单调递增,而f(x)是定义在R上的偶函数,容易判断是定义在上的奇函数,于是在上单调递增,而f(-1)=0,则.于是当时,.故选:D.10、D【解析】根据椭圆定义求解【详解】由椭圆定义得△的周长是,故选:D.11、B【解析】根据等比数列的性质可求.【详解】因为为等比数列,设公比为,则,解得,又,所以.故选:B.12、D【解析】如图作出可行域,知可行域的顶点是A(-2,2)、B()及C(-2,-2),平移,当经过A时,的最小值为-8,故选D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先求出函数的导函数,再令代入计算可得;【详解】解:因为,所以,所以,解得;故答案为:14、【解析】由已知可得为的中点,再由点差法求所在直线的斜率,即可求得直线的方程【详解】由,可得为的中点,且在椭圆内,设,,,,则,,,则,即所在直线的斜率为直线的方程为,即故答案为:15、36【解析】根据等比数列下标和性质得到,再根据等差数列前项和公式计算可得;【详解】解:因,所以,所以;故答案为:16、【解析】利用正弦定理表示出,再求t,再利用求的最大值即可.【详解】在中,由正弦定理得,所以,,即求的最大值,也就是求t的最小值,而,即最大时,由椭圆的性质知当P为椭圆上顶点时最大,此时,,所以,所以的最大值是1,,所以,故答案为:.【点睛】本题考查椭圆焦点三角形的问题,考查正弦定理的应用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)能为平行四边形;斜率为4-或4+【解析】(1)设两点坐标,由点差法证明(2)求出两点坐标,由平行四边形的几何性质判断【小问1详解】设的斜率为,,两式相减可得,即故【小问2详解】由(1)得的直线为,直线方程为联立,解得联立解得若四边形OAPB为平行四边形,则对角线互相平分为中点,解得,经检验,均符合题意故四边形OAPB能为平行四边形,此时斜率为4-或4+18、(1)an=2n(2)100【解析】(1)由等差数列的通项公式列出方程组求解即可;(2)由裂项相消求和法得出,再由不等式的性质得出n的最小值.【小问1详解】设等差数列{an}的公差为d,依题意有解得,所以an=2n.【小问2详解】由(1)得,则,所以因为,即,解得n>99,所以n的最小值为100.19、(1)(2)80件/小时【解析】(1)先利用等差数列的通项公式和频率分布直方图各矩形的面积之和为1求出各组频率,再利用频率分布直方图求中位数;(2)先求出、,利用最小二乘法求出回归直线方程,再进行预测其生产速度.【小问1详解】解:设前4组的频率分别为,,,,公差为,由频率分布直方图,得,即,解得,则,,所以中位数为.【小问2详解】解:由题意,得,,由所给公式,得,,所以回归直线方程为,则当时,,即估计该车间某位有16年工龄的工人的生产速度为80件/小时.20、(1)(2)众数;中位数【解析】(1)根据频率分布直方图矩形面积和为1列式即可;(2)根据众数即最高矩形中间值,中位数左右两边矩形面积各为0.5列式即可.【小问1详解】由,得【小问2详解】50名学生竞赛成绩的众数为设中位数为,则解得所以这50名学生竞赛成绩的中位数为76.421、(1);(2).【解析】(1)联立直线l与抛物线C的方程消去x,借助判别式建立不等式求解作答.(2)利用(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年省考经验分享试题及答案
- 2024年二级建造师考试预测试题及答案
- 档案管理中的技术应用试题及答案
- 档案开发与利用权利试题及答案
- ESG数据准确性的衡量标准试题及答案
- 2024年秘书证考试模拟试题及答案分享
- 怎样把101教育做好
- 档案利用中的伦理问题探讨试题及答案
- 2024年记者证考试策略性思维与试题及答案
- 《鲁滨逊漂流记》导读课 教学设计-2023-2024学年统编版语文六年级下册
- 2025年皖西卫生职业学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 《中国传统绘画艺术》课件
- 2025医保政策培训
- 中医药在口腔科疾病治疗中的应用
- 2024年正德职业技术学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 学生心理韧性对教学策略的影响研究
- 2025年度智慧医疗his系统采购合同模板3篇
- 企业对外宣传培训体系
- 巨量云图(中级)认证考试题库(附答案)
- 《可拆装低层装配式钢结构建筑技术标准》
- (英文版)ISO 14040-2006 环境管理生命周期评估原则和框架
评论
0/150
提交评论