2023-2024学年湖北省宜昌市点军区第二中学高二上数学期末质量跟踪监视模拟试题含解析_第1页
2023-2024学年湖北省宜昌市点军区第二中学高二上数学期末质量跟踪监视模拟试题含解析_第2页
2023-2024学年湖北省宜昌市点军区第二中学高二上数学期末质量跟踪监视模拟试题含解析_第3页
2023-2024学年湖北省宜昌市点军区第二中学高二上数学期末质量跟踪监视模拟试题含解析_第4页
2023-2024学年湖北省宜昌市点军区第二中学高二上数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年湖北省宜昌市点军区第二中学高二上数学期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是双曲线:的右焦点,是坐标原点,过作的一条渐近线的垂线,垂足为,并交轴于点.若,则的离心率为()A. B.C.2 D.2.双曲线的渐近线方程是()A. B.C. D.3.已知的周长等于10,,通过建立适当的平面直角坐标系,顶点的轨迹方程可以是()A. B.C. D.4.设,则“”是“直线与直线”平行的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.即不充分也不必要条件5.2019年湖南等8省公布了高考改革综合方案将采取“”模式即语文、数学、英语必考,考生首先在物理、历史中选择1门,然后在思想政治、地理、化学、生物中选择2门,一名同学随机选择3门功课,则该同学选到历史、地理两门功课的概率为()A. B.C. D.6.已知抛物线的焦点为,为抛物线上第一象限的点,若,则直线的倾斜角为()A. B.C. D.7.已知等比数列满足,则()A.168 B.210C.672 D.10508.已知平面法向量为,,则直线与平面的位置关系为A. B.C.与相交但不垂直 D.9.已知分别表示随机事件发生的概率,那么是下列哪个事件的概率()A事件同时发生B.事件至少有一个发生C.事件都不发生D事件至多有一个发生10.已知抛物线的焦点与椭圆的一个焦点重合,过坐标原点作两条互相垂直的射线,,与分别交于,则直线过定点()A. B.C. D.11.直线与圆相交于点,点是坐标原点,若是正三角形,则实数的值为A.1 B.-1C. D.12.如图所示,用3种不同的颜色涂入图中的矩形A,B,C中,要求相邻的矩形不能使用同一种颜色,则不同的涂法有()ABCA.3种 B.6种C.12种 D.27种二、填空题:本题共4小题,每小题5分,共20分。13.若函数解析式,则使得成立的的取值范围是___________.14.已知正数、满足,则的最大值为__________15.如图,某建筑物的高度,一架无人机上的仪器观测到建筑物顶部的仰角为,地面某处的俯角为,且,则此无人机距离地面的高度为________16.已知实数x,y满足约束条件,则的最小值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥中,是边长为2的正三角形,底面为菱形,且平面平面,,为上一点,满足.(1)证明:;(2)求二面角的余弦值.18.(12分)已知两定点,,动点与两定点的斜率之积为(1)求动点M的轨迹方程;(2)设(1)中所求曲线为C,若斜率为的直线l过点,且与C交于P,Q两点.问:在x轴上是否存在一点T,使得对任意且,都有(其中,分别表示,的面积).若存在,请求出点T的坐标;若不存在,请说明理由19.(12分)如图,四棱锥中,底面为正方形,底面,,点,,分别为,,的中点,平面棱(1)试确定的值,并证明你的结论;(2)求平面与平面夹角的余弦值20.(12分)已知双曲线C:的离心率为,过点作垂直于x轴的直线截双曲线C所得弦长为(1)求双曲线C的方程;(2)直线()与该双曲线C交于不同的两点A,B,且A,B两点都在以点为圆心的同一圆上,求m的取值范围21.(12分)椭圆的左右焦点分别为,,焦距为,为原点.椭圆上任意一点到,距离之和为.(1)求椭圆的标准方程;(2)过点的斜率为2的直线交椭圆于、两点,求的面积.22.(10分)在平面直角坐标系中,过点的直线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(1)求直线的普通方程和曲线的直角坐标方程;(2)设曲线与直线交于,两点,求线段的中点的直角坐标及的值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由条件建立a,b,c的关系,由此可求离心率的值.【详解】设,则,∵,∴,∴,∴,∴,∴,∴离心率,故选:A.2、A【解析】先将双曲线的方程化为标准方程得,再根据双曲线渐近线方程求解即可.【详解】解:将双曲线的方程化为标准方程得,所以,所以其渐近线方程为:,即.故选:A.3、A【解析】根据椭圆的定义进行求解即可.【详解】因为的周长等于10,,所以,因此点的轨迹是以为焦点的椭圆,且不在直线上,因此有,所以顶点的轨迹方程可以是,故选:A4、D【解析】由两直线平行确定参数值,根据充分必要条件的定义判断【详解】时,两直线方程分别为,,它们重合,不平行,因此不是充分条件;反之,两直线平行时,,解得或,由上知时,两直线不平行,时,两直线方程分别为,,平行,因此,本题中也不是必要条件故选:D5、A【解析】先由列举法计算出基本事件的总数,然后再求出该同学选到历史、地理两门功课的基本事件的个数,基本事件个数比即为所求概率.【详解】由题意,记物理、历史分别为、,从中选择1门;记思想政治、地理、化学、生物为、、、,从中选择2门;则该同学随机选择3门功课,所包含的基本事件有:,,,,,,,,,,,,共个基本事件;该同学选到历史、地理两门功课所包含的基本事件有:,,共个基本事件;该同学选到物理、地理两门功课的概率为.故选:A.【点睛】本题考查求古典概型的概率,属于基础题型.6、C【解析】设点,其中,,根据抛物线的定义求得点的坐标,即可求得直线的斜率,即可得解.【详解】设点,其中,,则,可得,则,所以点,故,因此,直线的倾斜角为.故选:C.7、C【解析】根据等比数列的性质求得,再根据,即可求得结果.【详解】等比数列满足,设等比数列的公比为q,所以,解得,故,故选:C8、A【解析】.本题选择A选项.9、C【解析】表示事件至少有一个发生概率,据此得到答案.【详解】分别表示随机事件发生的概率,表示事件至少有一个发生的概率,故表示事件都不发生的概率.故选:C.10、A【解析】由椭圆方程可求得坐标,由此求得抛物线方程;设,与抛物线方程联立可得韦达定理的形式,根据可得,由此构造方程求得,根据直线过定点的求法可求得定点.【详解】由椭圆方程知其焦点坐标为,又抛物线焦点,,解得:,则抛物线的方程为,由题意知:直线斜率不为,可设,由得:,则,即,设,,则,,,,,解得:或;又与坐标原点不重合,,,当时,,直线恒过定点.故选:A.【点睛】思路点睛:本题考查直线与抛物线综合应用中的直线过定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于或的一元二次方程的形式;②利用求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程;④根据直线过定点的求解方法可求得结果.11、C【解析】由题意得,直线被圆截得的弦长等于半径.圆的圆心坐标,设圆半径为,圆心到直线的距离为,则由条件得,整理得所以,解得.选C12、C【解析】根据给定信息,按用色多少分成两类,再分类计算作答.【详解】计算不同的涂色方法数有两类办法:用3种颜色,每个矩形涂一种颜色,有种方法,用2色,矩形A,C涂同色,有种方法,由分类加法计数原理得(种),所以不同的涂法有12种.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意先判断函数为偶函数,再利用的导函数判断在上单调递增,根据偶函数的对称性得上单调递减.要使成立,即,解不等式即可得到答案.【详解】,,为偶函数,当时,,故函数在上单调递增.为偶函数,在上单调递减.要使成立,即.故答案为:.14、【解析】直接利用均值不等式得到答案.【详解】,当即时等号成立.故答案为【点睛】本题考查了均值不等式,意在考查学生的计算能力.15、200【解析】在Rt△ABC中求得AC的值,△ACQ中由正弦定理求得AQ的值,在Rt△APQ中求得PQ的值【详解】根据题意,可得Rt△ABC中,∠BAC=60°,BC=300,∴AC200;△ACQ中,∠AQC=45°+15°=60°,∠QAC=180°﹣45°﹣60°=75°,∴∠QCA=180°﹣∠AQC﹣∠QAC=45°,由正弦定理,得,解得AQ200,在Rt△APQ中,PQ=AQsin45°=200200m故答案为200【点睛】本题考查了解三角形的应用问题,考查正弦定理,三角形内角和问题,考查转化化归能力,是基础题16、【解析】作出该不等式表示的平面区域,由的几何意义结合距离公式得出答案.【详解】该不等式组表示的平面区域,如下图所示过点作直线的垂线,垂足为因为表示原点与可行域中点之间的距离,所以的最小值为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)设为中点,连接,根据,证明平面得到答案.(2)以为原点,,,分别为,,轴建立空间直角坐标系,计算各点坐标,计算平面和平面的法向量,根据向量夹角公式计算得到答案.【详解】(1)设为中点,连接,,∵,∴,又∵底面四边形为菱形,,∴为等边三角形,∴,又∴,,平面,∴平面,而平面,∴.(2)∵平面平面,平面平面,,∴平面以为原点,,,分别为,,轴建立空间直角坐标系,则,,,,,,由,,,即,∴,,,设为平面的法向量,则由,令,得,,∴,设为平面的法向量,则由,令,得,,∴,设二面角的平面角为,则,∴二面角的的余弦值为.【点睛】本题考查了线线垂直,二面角,意在考查学生的计算能力和空间想象能力,建立空间直角坐标系是解题的关键.18、(1)(2)存在;【解析】(1)设出点的坐标,根据,即可直接求出动点M的轨迹方程;(2)根据题意写出直线的方程,把直线的方程与曲线的方程联立,消元,写韦达;根据条件,同时结合三角形的面积公式可得出;从而结合韦达定理可求出点T的坐标.【小问1详解】设,由,得,即,所以动点M的轨迹方程为.【小问2详解】设PT与RT夹角为,QT与RT夹角为,因为,所以,即,所以,设,,,直线l的方程为,因为,所以,即,所以,即①,由,得,所以,代入①式,得,解得,所以存在点,使得对任意且,都有.19、(1),证明见解析(2)【解析】(1),利用线面平行的判定和性质可得答案;(2)以为原点,所在直线分别为的正方向建立空间直角坐标系,求出平面的法向量和平面的法向量由向量夹角公式可得答案.【小问1详解】.证明如下:在△中,因为点分别为的中点,所以//.又平面,平面,所以//平面.因为平面,平面平面,所以//所以//.在△中,因为点为的中点,所以点为的中点,即.【小问2详解】因为底面为正方形,所以.因为底面,所以,.如图,建立空间直角坐标系,则,,,因为分别为的中点,所以.所以,.设平面的法向量,则即令,于.又因为平面的法向量为,所以所以平面与平面夹角的余弦值为.20、(1)(2)或【解析】(1)利用双曲线离心率、点在双曲线上及得到关于、、的方程组,进而求出双曲线的标准方程;(2)联立直线和双曲线的方程,得到关于的一元二次方程,利用直线和双曲线的位置关系、根与系数的关系得到两个交点坐标间的关系,利用A,B两点都在以点为圆心的同一圆上得到,再利用向量的数量积为0得到、的关系,进而消去得到的不等式进行求解.【小问1详解】解:因为过点作垂直于x轴的直线截双曲线C所得弦长为,所以点在双曲线上,由题意,得,解得,,,即双曲线的标准方程为.【小问2详解】解:联立,得,因为直线与该双曲线C交于不同的两点,所以且,即且,设,,的中点,则,,因为A,B两点都在以点为圆心的同一圆上,所以,即,因为,,所以,即,将代入,得,解得或,即m的取值范围为或.21、(1)(2)【解析】(1)根据题意和椭圆的定义可知a,c,再根据,即可求出b,由此即可求出椭圆的方程;(2)求出直线方程,将其与椭圆方程联立,根据弦长公式求出的长度,再根据点到直线的距离公式求出点O到直线AB的距离,再根据面积公式即可求出结果.【小问1详解】由题意可得,,∴,,,所以椭圆的标准方程为.【小问2详解】直线l的方程为,代入椭圆方程得,设,,则,,,∴,又∵点O到直线AB的距离

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论