




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年桂林中学高二上数学期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题:,命题:,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.函数的导数记为,则等于()A. B.C. D.3.已知等差数列,,则公差d等于()A. B.C.3 D.-34.在四棱锥中,底面是正方形,为的中点,若,则()A B.C. D.5.如图,A,B,C三点不共线,O为平面ABC外一点,且平面ABC中的小方格均为单位正方形,,,则()A.1 B.C.2 D.6.在等差数列中,为其前项和,若.则()A. B.C. D.7.德国数学家高斯是近代数学奠基者之一,有“数学王子”之称,在历史上有很大的影响.他幼年时就表现出超人的数学天才,10岁时,他在进行的求和运算时,就提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成,因此,此方法也称之为高斯算法.已知数列,则()A.96 B.97C.98 D.998.已知等差数列前项和为,若,则的公差为()A.4 B.3C.2 D.19.在棱长为4的正方体中,为的中点,点P在正方体各棱及表面上运动且满足,则点P轨迹围成的图形的面积为()A. B.C. D.10.已知的展开式中,各项系数的和与其各项二项式系数的和之比为,则()A.4 B.5C.6 D.711.已知正实数满足,则的最小值为()A. B.9C. D.12.算盘是中国古代的一项重要发明.现有一种算盘(如图1),共两档,自右向左分别表示个位和十位,档中横以梁,梁上一珠拨下,记作数字5,梁下五珠,上拨一珠记作数字1(如图2中算盘表示整数51).如果拨动图1算盘中的两枚算珠,可以表示不同整数的个数为()A.8 B.10C.15 D.16二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则的值为______14.如图所示,二面角为,是棱上的两点,分别在半平面内,且,,,,,则的长______15.椭圆的左焦点为,M为椭圆上的一点,N是的中点,O为原点,若,则______16.已知直线:与直线:平行,则的值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆关于直线对称,且圆心C在轴上.(1)求圆C的方程;(2)直线与圆C交于A、B两点,若为等腰直角三角形,求直线的方程.18.(12分)已知四棱锥的底面是矩形,底面,且,设E、F、G分别为PC、BC、CD的中点,H为EG的中点,如图.(1)求证:平面;(2)求直线FH与平面所成角的大小.19.(12分)已知直线,圆.(1)求证:直线l恒过定点;(2)若直线l的倾斜角为,求直线l被圆C截得的弦长.20.(12分)已知抛物线的顶点为原点,焦点F在x轴的正半轴,F到直线的距离为.点为此抛物线上的一点,.直线l与抛物线交于异于N的两点A,B,且.(1)求抛物线方程和N点坐标;(2)求证:直线AB过定点,并求该定点坐标.21.(12分)已知双曲线的左,右焦点为,离心率为.(1)求双曲线C的渐近线方程;(2)过作斜率为k的直线l分别交双曲线的两条渐近线于A,B两点,若,求k的值.22.(10分)已知等差数列的公差为2,且,,成等比数列.(1)求的通项公式;(2)求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用充分条件和必要条件的定义判断.【详解】因为命题:或,命题:,所以是的必要不充分条件,故选:B2、D【解析】求导后代入即可.【详解】,.故选:D.3、B【解析】根据题意,利用公式,即可求解.【详解】由题意,等差数列,,可得等差数列的公差.故选:B.4、C【解析】由为的中点,根据向量的运算法则,可得,即可求解.【详解】由底面是正方形,E为的中点,且,根据向量的运算法则,可得.故选:C.5、B【解析】根据向量的线性运算,将向量表示为,再根据向量的数量积的运算进行计算可得答案,【详解】因为,所以=,故选:B.6、C【解析】利用等差数列的性质和求和公式可求得的值.【详解】由等差数列的性质和求和公式可得.故选:C.7、C【解析】令,利用倒序相加原理计算即可得出结果.【详解】令,,两式相加得:,∴,故选:C8、A【解析】由已知,结合等差数列前n项和公式、通项公式列方程组求公差即可.详解】由题设,,解得.故选:A9、A【解析】构造辅助线,找到点P轨迹围成的图形为长方形,从而求出面积.【详解】取的中点E,的中点F,连接BE,EF,AF,则由于为的中点,可得,所以∠CBE=∠ECN,从而∠BCN+∠CBE=∠BCN+∠ECN=90°,所以BE⊥CN,又EF⊥平面,平面,所以EF⊥CN,又因为BEEF=E,所以CN⊥平面ABEF,所以点P轨迹围成的图形为矩形ABEF,又,所以矩形ABEF面积为.故选:A10、C【解析】利用赋值法确定展开式中各项系数的和以及二项式系数的和,利用比值为,列出关于的方程,解方程.【详解】二项式的各项系数的和为,二项式的各项二项式系数的和为,因为各项系数的和与其各项二项式系数的和之比为,所以,.故选:C.11、A【解析】根据,将式子化为,进而化简,然后结合基本不等式求得答案.【详解】因为,所以,当且仅当,即时取等号,所以的最小值为.故选:A.12、A【解析】根据给定条件分类探求出拨动两枚算珠的结果计算得解.【详解】拨动图1算盘中的两枚算珠,有两类办法,由于拨动一枚算珠有梁上、梁下之分,则只在一个档拨动两枚算珠共有4种方法,在每一个档各拨动一枚算珠共有4种方法,由分类加法计数原理得共有8种方法,所以表示不同整数的个数为8.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求出的导函数,然后将代入可得答案.【详解】,所以故答案为:14、【解析】推导出,从而,结合,,,能求出的长【详解】二面角为,是棱上的两点,分别在半平面、内,且所以,所以,,,的长故答案为【点睛】本题主要考查空间向量的运算法则以及数量积的运算法则,意在考查灵活应用所学知识解答问题的能力,是中档题15、4【解析】根据三角形的中位线定理,结合椭圆的定义即可求得答案.【详解】椭圆的左焦点为,如图,设右焦点为,则,由N是的中点,O为得中点,,故,又,所以,故答案为:416、-1【解析】根据两直线平行的条件列式求解即可.【详解】由题意可知,的斜率,的斜率,∵,∴解得.故当时,直线:与直线:平行.故答案为:-1.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)根据题意得到等量关系,求出,,进而求出圆的方程;(2)结合第一问求出的圆心和半径,及题干条件得到圆心到直线的距离为,列出方程,求出的值,进而得到直线方程【小问1详解】由题意得:直线过圆心,即,且,解得:,,所以圆C的方程为;【小问2详解】的圆心为,半径为2,由题意得:,圆心到直线的距离为,即,解得:或,所以直线的方程为:或.18、(1)证明见解析(2)【解析】(1)连接CH,延长交PD于点K,连接BK,根据E、F、G分别为PC、BC、CD的中点,易得,再利用线面平行的判定定理证明.(2)建立空间直角坐标,求得的坐标,平面PBC一个法向量,代入公式求解.【详解】(1)如图所示:连接CH,延长交PD于点K,连接BK,因为设E、F、G分别为PC、BC、CD的中点,所以H为CK的中点,所以,又平面平面,所以平面;(2)建立如图所示直角坐标系则,所以,设平面PBC一个法向量为:,则,有,令,,设直线FH与平面所成角为,所以,因为,所以.【点睛】本题主要考查线面平行的判定定理,线面角的向量求法,还考查了转化化归的思想和逻辑推理,运算求解的能力,属于中档题.19、(1)证明见解析(2)【解析】(1)直线方程变形后令的系数等于0消去参数即可求得定点坐标.(2)先求出圆心C到直线l距离,然后用勾股定理即可求得弦长.【小问1详解】,联立得:即直线l过定点(.【小问2详解】由题意直线l的斜率,即,∴,圆,圆心,半径,圆心C到直线l的距离,所以直线l被圆C所截得的弦长为.20、(1),(2)证明见解析,定点【解析】(1)设抛物线的标准方程为,利用点到直线距离公式可求出,再利用焦半径公式可求出N点坐标;(2)设直线的方程为,与抛物线联立,利用韦达定理计算,可得关系,然后代入直线方程可得定点.【小问1详解】设抛物线的标准方程为,,其焦点为则,∴所以抛物线的方程为.,所以,所以.因为,所以,所以.【小问2详解】由题意知,直线的斜率不为0,设直线的方程为(),联立方程得设两个交点,(,).所以所以,即整理得,此时恒成立,此时直线l的方程为,可化为,从而直线过定点.21、(1)(2)【解析】(1)由离心率可得双曲线的渐近线方程;(2)设,则的中点为,由,可得,然后的方程与双曲线的渐近线方程联立,利用韦达定理可得答案.【小问1详解】设,则,又,所以,得,所以双曲线的渐近线方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 体育馆停车场车位租赁服务协议
- 顶级汽车品牌专卖店租赁及品牌营销协议
- 买尿不湿活动方案
- 焦化项目冷鼓工段建筑及安装工程施工组织
- 公职律师人员管理制度
- 公司邮寄物品管理制度
- 小学假日值班管理制度
- 初中教师上课管理制度
- 医院基建维修管理制度
- 小学足球球场管理制度
- 起重机服务协议合同协议
- 江苏卷-2025届高考地理4月模拟预测卷(解析版)
- 钢铁行业环境污染
- GB 19762-2025离心泵能效限定值及能效等级
- 煤矿雨季三防培训
- 四下数学小数的意义和性质常考易错
- 2024-2030全球虹鳟和硬头鳟养殖行业调研及趋势分析报告
- 北师大版(2024)生物七年级下册生物第11章《人体的运动》综合素养测试卷(含答案)
- 2025年少先队知识考试测试题库
- 2024北京丰台区初一(下)期末英语试题和答案
- 内蒙古自治区科技成果交易平台
评论
0/150
提交评论