2023-2024学年广东省华南师大附中高二数学第一学期期末质量检测模拟试题含解析_第1页
2023-2024学年广东省华南师大附中高二数学第一学期期末质量检测模拟试题含解析_第2页
2023-2024学年广东省华南师大附中高二数学第一学期期末质量检测模拟试题含解析_第3页
2023-2024学年广东省华南师大附中高二数学第一学期期末质量检测模拟试题含解析_第4页
2023-2024学年广东省华南师大附中高二数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年广东省华南师大附中高二数学第一学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上两人与下三人等,问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得之和与丙、丁、戊所得之和相同,且是甲、乙、丙、丁、戊所得以此为等差数列,问五人各得多少钱?”(“钱”是古代一种重量单位),这个问题中戊所得为()A.钱 B.钱C.钱 D.钱2.已知O为坐标原点,,点P是上一点,则当取得最小值时,点P的坐标为()A. B.C. D.3.已知条件:,条件:表示一个椭圆,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.某工厂去年的电力消耗为千瓦,由于设各更新,该工厂计划每年比上一年的电力消耗减少,则从今年起,该工厂第5年消耗的电力为()A.m千瓦 B.m千瓦C.m千瓦 D.m千瓦5.若,则下列结论不正确的是()A. B.C. D.6.我国古代数学著作《算法统宗》中有这样一段记载:“一百八十九里关,初行健步不为难,次日脚痛减一半,六朝才得到其关.”其大意为:“有一个人共行走了189里的路程,第一天健步行走,从第二天起,因脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则该人第一天行走的路程为()A.108里 B.96里C.64里 D.48里7.已知椭圆的左,右两个焦点分别为,若椭圆C上存在一点A,满足,则椭圆C的离心率的取值范围是()A. B.C. D.8.已知双曲线C1的一条渐近线方程为y=kx,离心率为e1,双曲线C2的一条渐近线方程为y=x,离心率为e2,且双曲线C1、C2在第一象限交于点(1,1),则=()A.|k| B.C.1 D.29.函数的大致图象为A. B.C. D.10.已知命题,命题,,则下列命题中为真命题的是A. B.C. D.11.已知是抛物线上的一点,是抛物线的焦点,若以为始边,为终边的角,则等于()A. B.C. D.12.若抛物线y2=4x上一点P到x轴的距离为2,则点P到抛物线的焦点F的距离为()A.4 B.5C.6 D.7二、填空题:本题共4小题,每小题5分,共20分。13.若直线与双曲线的右支交于不同的两点,则的取值范围__________14.如图,棱长为1的正方体,点沿正方形按的方向作匀速运动,点沿正方形按的方向以同样的速度作匀速运动,且点分别从点A与点同时出发,则的中点的轨迹所围成图形的面积大小是________.15.已知空间向量,则向量在坐标平面上的投影向量是__________16.已知拋物线的焦点F为,过点F的直线交该抛物线的准线于点A,与该抛物线的一个交点为B,且,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知三棱柱的侧棱垂直于底面,,,,,分别是,的中点.(Ⅰ)证明:平面;(Ⅱ)求二面角的余弦值.18.(12分)如图,在四棱锥中,侧面底面ABCD,侧棱,底面ABCD为直角梯形,其中,,,(1)求证:平面ACF;(2)在线段PB上是否存在一点H,使得CH与平面ACF所成角的正弦值为?若存在,求出线段PH的长度;若不存在,请说明理由19.(12分)已知双曲线,抛物线的焦点与双曲线的一个焦点相同,点为抛物线上一点.(1)求双曲线的焦点坐标;(2)若点到抛物线的焦点的距离是5,求的值.20.(12分)已知直线经过椭圆的右焦点,且椭圆C的离心率为(1)求椭圆C的标准方程;(2)以椭圆的短轴为直径作圆,若点M是第一象限内圆周上一点,过点M作圆的切线交椭圆C于P,Q两点,椭圆C的右焦点为,试判断的周长是否为定值.若是,求出该定值21.(12分)分别求满足下列条件的曲线方程(1)以椭圆的短轴顶点为焦点,且离心率为的椭圆方程;(2)过点,且渐近线方程为的双曲线的标准方程22.(10分)已知:,,:,,且为真命题,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题意将实际问题转化为等差数列的问题即可解决【详解】解:由题意,可设甲、乙、丙、丁、戊五人分得的钱分别为,,,,则,,,,成等差数列,设公差为,整理上面两个算式,得:,解得,故选:2、A【解析】根据三点共线,可得,然后利用向量的减法坐标运算,分别求得,最后计算,经过化简观察,可得结果.【详解】设,则则∴当时,取最小值为-10,此时点P的坐标为.故选:A【点睛】本题主要考查向量数量积的坐标运算,难点在于三点共线,审清题干,简单计算,属基础题.3、B【解析】根据曲线方程,结合充分、必要性的定义判断题设条件间的关系.【详解】由,若,则表示一个圆,充分性不成立;而表示一个椭圆,则成立,必要性成立.所以是的必要不充分条件.故选:B4、D【解析】根据等比数列的定义进行求解即可.【详解】因为去年的电力消耗为千瓦,工厂计划每年比上一年的电力消耗减少,所以今年的电力消耗为,因此从今年起,该工厂第5年消耗的电力为,故选:D5、B【解析】由得出,再利用不等式的基本性质和基本不等式来判断各选项中不等式的正误.【详解】,,,,A选项正确;,B选项错误;由基本不等式可得,当且仅当时等号成立,,则等号不成立,所以,C选项正确;,,D选项正确.故选:B.【点睛】本题考查不等式正误的判断,涉及不等式的基本性质和基本不等式,考查推理能力,属于基础题.6、B【解析】根据题意,记该人每天走的路程里数为,分析可得每天走的路程里数构成以的为公比的等比数列,由求得首项即可【详解】解:根据题意,记该人每天走的路程里数为,则数列是以的为公比的等比数列,又由这个人走了6天后到达目的地,即,则有,解可得:,故选:B.【点睛】本题考查数列的应用,涉及等比数列的通项公式以及前项和公式的运用,注意等比数列的性质的合理运用.7、C【解析】根据题意可知当A为椭圆的上下顶点时,即可满足椭圆C上存在一点A,使得,由此可得,解此不等式可得答案.【详解】由椭圆的对称性可知,当A为椭圆的上下顶点时,最大,故只需即可满足题意,设O为坐标原点,则只需,即有,所以,解得,故选:C8、C【解析】根据渐近线方程设出双曲线方程,再由过点,可知双曲线方程,从而可求离心率.【详解】由题,设双曲线的方程为,又因为其过,且可知,不妨设,代入,得,所以双曲线的方程为,所以,同理可得双曲线的方程为,所以可得,所以,当时,结论依然成立.故选:C9、D【解析】根据函数奇偶性排除A、C.当时排除B【详解】解:由可得所以函数为偶函数,排除A、C.因为时,,排除B.故选:D.10、D【解析】命题是假命题,命题是真命题,根据复合命题的真值表可判断真假.【详解】因为,故命题是假命题,又命题是真命题,故为假,为假,为假,为真命题,故选D.【点睛】复合命题的真假判断有如下规律:(1)或:一真比真,全假才假;(2)且:全真才真,一假比假;(3):真假相反.11、D【解析】设点,取,可得,求出的值,利用抛物线的定义可求得的值.【详解】设点,其中,则,,取,则,可得,因为,可得,解得,则,因此,.故选:D.12、A【解析】根据抛物线y2=4x上一点P到x轴的距离为2,得到点P(3,±2),然后利用抛物线的定义求解.【详解】由题意,知抛物线y2=4x的准线方程为x=-1,∵抛物线y2=4x上一点P到x轴的距离为2,则P(3,±2),∴点P到抛物线的准线的距离为3+1=4,∴点P到抛物线的焦点F的距离为4.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】联立直线与双曲线方程,可知二次项系数不为零、判别式大于零、两根之和与两根之积均大于零,据此构造不等式组,解不等式组求得结果.详解】将代入双曲线方程整理可得:设直线与双曲线右支交于两点,解得:本题正确结果:【点睛】本题考查根据直线与双曲线位置关系求解参数范围的问题,属于基础题.14、##【解析】画出符合要求的图形,观察得到轨迹是菱形,并进行充分性和必要性两方面的证明,并求解出轨迹图形的面积.【详解】如图,分别是正方形ABCD,,的中心,下面进行证明:菱形EFGC的周界即为动线段PQ的中点H的轨迹,首先证明:如果点H是动线段PQ的中点,那么点H必在菱形EFGC的周界上,分两种情况证明:(1)P,Q分别在某一个定角的两边上,不失一般性,设P从B到C,而Q同时从到C,由于速度相同,所以PQ必平行于,故PQ的中点H必在上;(2)P,Q分别在两条异面直线上,不失一般性,设P从A到B,同时Q从到,由于速度相同,则,由于H为PQ的中点,连接并延长,交底面ABCD于点T,连接PT,则平面与平面交线是PT,∵∥平面,∴∥PT,∴,而,∥BC,∴是等腰直角三角形,,从而T在AC上,可以证明FH∥AC,GH∥AC,DG∥AC,基于平行线的唯一性,显然H在DG上,综合(1)(2)可证明,线段PQ的中点一定在菱形EFGC的周界上;下面证明:如果点H在菱形EFGC的周界上,则点H必定是符合条件的线段的中点.也分两种情况进行证明:(1)H在CG或CE上,过点H作PQ∥(或BD),而与BC及(或CD及BC)分别相交于P和Q,由相似的性质可得:PH=QH,即H是PQ的中点,同时可证:BP=(或BQ=DP),因此P、Q符合题设条件(2)H在EF或FG上,不失一般性,设H在FG上,连接并延长,交平面AC于点T,显然T在AC上,过T作TP∥CB于点P,则TP∥,在平面上,连接PH并延长,交于点Q,在三角形中,G是的中点,∥AC,则H是的中点,于是,从而有,又因为TP∥CB,,所以,从而,因此P,Q符合题设条件.由(1)(2),如果H是菱形EFGC周界上的任一点,则H必是符合题设条件的动线段PQ的中点,证毕.因为四边形为菱形,其中,所以边长为且,为等边三角形,,所以面积.故答案为:【点睛】对于立体几何轨迹问题,要画出图形,并要善于观察,利用所学的立体几何方面的知识,大胆猜测,小心验证,对于多种情况的,要画出相应的图形,注意分类讨论.15、【解析】根据投影向量的知识求得正确答案.【详解】空间向量在坐标平面上的投影向量是.故答案为:16、【解析】作垂直于准线,垂足为,准线与轴交于点,根据已知条件,利用几何方法,结合抛物线的定义得到答案.【详解】抛物线的焦点坐标,准线方程,作垂直于准线于,准线与轴交于点,则,∴.∵,∴,由抛物线的定义得,∴.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】分析:依题意可知两两垂直,以点为原点建立空间直角坐标系,(1)利用直线的方向向量和平面的法向量垂直,即可证得线面平面;(2)求出两个平面的法向量,利用两个向量的夹角公式,即可求解二面角的余弦值.详解:依条件可知、、两两垂直,如图,以点为原点建立空间直角坐标系.根据条件容易求出如下各点坐标:,,,,,,,.(Ⅰ)证明:∵,,是平面的一个法向量,且,所以.又∵平面,∴平面;(Ⅱ)设是平面的法向量,因为,,由,得.解得平面的一个法向量,由已知,平面的一个法向量为,,∴二面角的余弦值是.点睛:本题考查了立体几何中的面面垂直的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.18、(1)证明见解析(2)存在,的长为或,理由见解析.【解析】(1)建立空间直角坐标系,利用向量法证得平面.(2)设,求出,根据与平面所成角的正弦值列方程,由此求得,进而求得的长.小问1详解】依题意,在四棱锥中,侧面底面ABCD,侧棱,底面ABCD为直角梯形,其中,,,,以为空间坐标原点建立如图所示空间直角坐标系,,,设平面法向量为,则,故可设,由于,所以平面.【小问2详解】存在,理由如下:设,,,,依题意与平面所成角的正弦值为,即,,解得或.,即的长为或,使与平面所成角的正弦值为.19、(1);(2).【解析】(1)根据双曲线的方程求出即得双曲线的焦点坐标;(2)先求出的值,再解方程得解.【详解】(1)因为双曲线的方程为,所以.所以.所以.所以双曲线的焦点坐标分别为.(2)因为抛物线的焦点与双曲线的一个焦点相同,所以抛物线的焦点坐标是(2,0),所以.因为点为抛物线上一点,所以点到抛物线的焦点的距离等于点到抛物线的准线的距离.因为点到拋物线的焦点的距离是5,即,所以.【点睛】本题主要考查双曲线的焦点坐标的求法,考查抛物线的定义和几何性质,意在考查学生对这些知识的理解掌握水平.20、(1)(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论