版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年广东省佛山市禅城区中考数学一模试卷学校:___________姓名:___________班级:___________考号:___________题号一二三四总分得分注意:本试卷包含Ⅰ、Ⅱ两卷。第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。答案写在试卷上均无效,不予记分。一、选择题1、-5的绝对值是()A.5 B.-C.-5 D. 2、某种细菌的半径是0.00000618米,用科学记数法把半径表示为()A.618×10-6 B.6.18×10-7 C.6.18×106 D.6.18×10-6 3、下列运算正确的是()A.a+2a=3a2 B.a3•a2=a5 C.(a4)2=a6 D.a4+a2=a4 4、“对称美“体现了中国古人的和谐平衡的精神之美.从古至今,人们将对称元素赋予建筑、器物、绘面、饰品等事物上.在下列我国古代建筑简图中,不是轴对称图形的是()A. B.C. D. 5、小明记录了自己一周每天的零花钱(单位:元),分别如下:5,4.5,5,5.5,5.5,5,4.5;则这组数据的中位数是()A.5 B.4.5 C.5.5 D.5.2 6、如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=52°,则∠2的度数为()A.52° B.102° C.98° D.108° 7、因式分解4x-x3的最后结果是()A.x(4-x2) B.x(2-x)2 C.x(4+x)(4-x) D.x(2-x)(2+x) 8、下列命题:(1)两点之间直线最短;(2)等角的补角相等;(3)不每式组的解集是-2<x<2;(4)函数y=2-x中,y随x的增大而增大;其中真命题的个数是()A.2个 B.3个 C.4个 D.1个 9、如图,直线y=kx-3(k≠0)与坐标轴分别交于点C,B,与双曲线y=-(x<0)交于点A(m,1),则AB的长是()A.2 B.C.2 D. 10、如图,AB为⊙O的直径,点C为圆上一点,将劣弧AC沿弦AC翻折交AB于点D,连结CD,点D与圆心O不重合,∠BAC=26°,则∠DCA的度数为()A.38° B.40° C.42° D.44° 二、填空题1、八边形内角和度数为______.2、空调安装在墙上时,一般都会象如图所示的方法固定在墙上,这种方法应用的数学知识是______.3、数轴上的点A与点B间的距离为3,点A表示的数是-4,则点B表示的数是______.4、如图是一幅总面积为3m2的长方形世界杯宣传画,现将宣传画平铺在地上,向宣传画内随机投掷骰子(假设骰子落在宣传画内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.6附近,由此可估计宣传画上世界杯图案的面积约为______m2.5、已知a,b,c是△ABC的三边长,a,b满足|a-7|+(b-1)2=0,c为奇数,则c=______.6、如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…….记△B1CB2面积为S1,△B2C1B3面积为S2,△B3C2B4面积为S3,则Sn=______.三、解答题1、计算:|1-|+-(π-3.14)0+tan45°______四、计算题1、先化简,再求值:,其中a=3,b=-l.______2、如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1.(2)画出△ABC绕点O逆时针旋转90°后得到的△A2B2C2.(3)在(2)的条件下,求点A所经过的路径长(结果保留π).______3、某中学为了解学生对新闻、体育、娱乐、动画四类电视节目的喜爱情况,随机抽取了部分同学进行了统计调查(被调查的每名学生必选且只能选择四类节目中的一类),井将调查结果绘成如下两个不完整的统计图:(1)求出图中x的值并补全条形统计图;(2)根据抽样调查结果,若该校有1800名学生,请估计该校大约有多少名学生最喜欢娱乐类节目.______4、如图,▱ABCD中,(1)作边AB的中点E,连接DE并延长,交CB的延长线于点F;(用尺规作图,保留作图痕迹,不要求写作法):(2)已知▱ABCD的面积为8,求四边形EBCD的面积.______5、为迎接“七•一”党的生日,某校准备组织师生共310人参加一次大型公益活动,租用4辆大客车和6辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15个.(1)求每辆大客车和每辆小客车的座位数;(2)经学校统计,实际参加活动的人数增加了40人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生均有座位,最多租用小客车多少辆?______6、如图甲,直线y=-x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).______7、如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.(1)求证:CF是⊙O的切线;(2)求证:△ACM∽△DCN;(3)若点M是CO的中点,⊙O的半径为4,cos∠BOC=,求BN的长.______8、如图,在△ABC中,AB=AC=l0cm,BD⊥AC于点D,且BD=8cm.点M从点A出发,沿AC的方向匀速运动,速度为2cm/s;同吋点P从点B出发沿BA的方向匀速运动,速度为lcm/s.已知:过点P的直线PQ满足PQ∥AC,直线PQ交BC于点Q、交BD于点F.设运动时间为ts
(0<t<5);(1)当S四边形PQCM=S△ABC时,直接写出t的值;(2)设四边形PQCM的面积为ycm2,求y与t之间的函数关系式;(3)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.______
2019年广东省佛山市禅城区中考数学一模试卷参考答案一、选择题第1题参考答案:A解:-5的绝对值是5.故选:A.根据负数的绝对值是它的相反数是,可得答案.本题考查了绝对值,利用了绝对值的性质是解题关键.---------------------------------------------------------------------第2题参考答案:D解:0.00000618米,用科学记数法把半径表示为6.18×10-6.故选:D.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.---------------------------------------------------------------------第3题参考答案:B解:A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.根据整式的加法和幂的运算法则逐一判断即可.本题主要考查幂的运算和整式的加法,掌握同类项的定义和同底数幂相乘、幂的乘方法则是解题的关键.---------------------------------------------------------------------第4题参考答案:B解:A、是轴对称图形;B、不是轴对称图形;C、是轴对称图形;D、是轴对称图形;故选:B.根据轴对称图形的概念判断即可.本题考查的是轴对称图形的识别,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.---------------------------------------------------------------------第5题参考答案:A解:把这些数据从小到大排列为:4.5,4.5,5,5,5,5.5,5.5,最中间的数是5,则这组数据的中位数是5;故选:A.先把这些数据从小到大排列,找出最中间的数即可得出答案.本题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.---------------------------------------------------------------------第6题参考答案:C解:如图,∵l1∥l2,∴∠1=∠3=52°,又∵∠4=30°,∴∠2=180°-∠3-∠4=180°-52°-30°=98°,故选:C.依据l1∥l2,即可得到∠1=∠3=52°,再根据∠4=30°,即可得出从∠2=180°-∠3-∠4=98°.此题主要考查了平行线的性质,三角板的特征,角度的计算,解本题的关键是利用平行线的性质.---------------------------------------------------------------------第7题参考答案:D解:4x-x3=x(4-x2)=x(2-x)(2+x),故选:D.先提取公因式,再根据平方差公式分解即可.本题考查了分解因式,因式分解的方法有:提取公因式法,公式法,因式分解法,十字相乘法等.---------------------------------------------------------------------第8题参考答案:A解:①两点之间线段最短,不正确;②等角的补角相等,正确,是真命题;③不等式组的解集是-2<x<2,正确,是真命题;④对于函数y=2-x,y随x的增大而减小,不正确.真命题有:②③,2个,故选:A.利用平行线的性质,互补的性质,不等式的解集,一次函数的增减性等分别判断后即可确定正确的选项.本题考查了命题与定理的知识,解题的关键是了解平行线的性质,互补的性质,不等式的解集,一次函数的增减性等知识点,难度不大.---------------------------------------------------------------------第9题参考答案:A解:如图,过点A作AD⊥y轴于点D,∵点A(m,1)在y=-上,∴-=1,解得:m=-2,即A(-2,1),则AD=2、OD=1,由y=kx-3可得B(0,-3),即BO=3,∴BD=4,则AB===2,故选:A.作AD⊥y轴,由点A(m,1)在y=-上知A(-2,1),即AD=2、OD=1,由y=kx-3可得B(0,-3),即BO=3、BD=4,再根据勾股定理求解可得.本题主要考查反比例函数与一次函数的交点问题,解题的关键掌握函数图象上的点的坐标必定满足函数解析式及勾股定理的运用.---------------------------------------------------------------------第10题参考答案:A解:连接BC,∵AB是直径,∴∠ACB=90°,∵∠BAC=26°,∴∠B=90°-∠BAC=90°-26°=64°,根据翻折的性质,所对的圆周角为∠B,所对的圆周角为∠ADC,∴∠ADC+∠B=180°,∴∠ADC=180°-64°=116°,△ADC中,∵∠BAC=26°,∴∠DCA=180°-116°-26°=38°,故选:A.连接BC,根据直径所对的圆周角是直角求出∠ACB,根据直角三角形两锐角互余求出∠B,再根据翻折的性质得到∠ADC的度数,最后利用三角形内角和可得结论.本题考查了圆周角定理以及折叠问题的知识,根据同弦所对的两个圆周角互补求解是解题的关键,此题难度不大.二、填空题---------------------------------------------------------------------第1题参考答案:1080°解:(8-2)•180°=6×180°=1080°.故答案为:1080°.根据多边形的内角和公式(n-2)•180°进行计算即可得解.本题考查了多边形的内角和,熟记内角和公式是解题的关键.---------------------------------------------------------------------第2题参考答案:三角形的稳定性解:这种方法应用的数学知识是:三角形的稳定性.钉在墙上的方法是构造三角形,因而应用了三角形的稳定性.本题主要考查了三角形的稳定性,正确掌握三角形的这一性质是解题的关键.---------------------------------------------------------------------第3题参考答案:-1或-7解:∵数轴上的点A与点B间的距离为3,点A表示的数是-4,∴点B表示的数为:-4-3=-7或-4+3=-1,故答案为:-1或-7.根据数轴上的点A与点B间的距离为3,点A表示的数是-4,从而可以求得点B表示的数,本题得以解决.本题考查数轴,解答本题的关键是明确数轴的特点,求出点B表示的数.---------------------------------------------------------------------第4题参考答案:1.8解:∵骰子落在世界杯图案中的频率稳定在常数0.6附近,∴世界杯图案占长方形世界杯宣传画的60%,∴世界杯图案的面积约为:3×60%=1.8m2,故答案为:1.8.根据世界杯图案的面积与长方形世界杯宣传画的面积之间的关系计算即可.本题考查的是利用频率估计概率,正确得到世界杯图案的面积与长方形世界杯宣传画的面积之间的关系是解题的关键.---------------------------------------------------------------------第5题参考答案:7解:∵a,b满足|a-7|+(b-1)2=0,∴a-7=0,b-1=0,解得a=7,b=1,∵7-1=6,7+1=8,∴6<c<8,又∵c为奇数,∴c=7,故答案是:7.根据非负数的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c的取值范围,再根据c是奇数求出c的值.本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.---------------------------------------------------------------------第6题参考答案:•()n-1解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=B1C=1,∠ACB=60°,∴B1B2=B1C=,B2C=,∴S1=××=依题意得,图中阴影部分的三角形都是相似图形,且相似比为,故Sn=•()n-1.故答案为:•()n-1.先计算出S1=,再根据阴影三角形都相似,后面的三角形面积是前面面积的.此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.三、解答题---------------------------------------------------------------------第1题参考答案:解:|1-|+-(π-3.14)0+tan45°=-1+9-1+1=8+首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.四、计算题---------------------------------------------------------------------第1题参考答案:解:===a-b,当a=3,b=-1时,原式=3-(-1)=3+1=4.根据分式的减法和除法可以化简题目中的式子,再将a、b的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.---------------------------------------------------------------------第2题参考答案:解:(1)如图:△A1B1C1,即为所求;(2)如图:△A2B2C2,即为所求;(3)r==,A经过的路径长:×2×π×=π.(1)直接利用关于x轴对称的性质得出对应点位置进而得出答案;(2)利用旋转的性质得出对应点位置进而得出答案;(3)直接利用弧长公式计算得出答案.此题主要考查了旋转变换以及轴对称变换和弧长公式应用,正确得出对应点位置是解题关键.---------------------------------------------------------------------第3题参考答案:解:(1)抽取的学生总人数为6÷12%=50(人),x%==18%,∴x=18,娱乐是人数=50-6-15-9=20(人),统计图如图所示:(2)1800×=720(人),答:估计该校大约有720名学生最喜欢娱乐类节目.(1)根据喜欢新闻的人数和百分比求出总人数即可解决问题,再求出喜欢娱乐的人数,画出条形图即可.(2)利用样本估计总体的思想解决问题即可.本题考查条形统计图,扇形统计图,样本估计总体的思想等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.---------------------------------------------------------------------第4题参考答案:解:(1)作线段AB的垂直平分线MN交AB于点E,点E即为所求.(2)∵四边形ABCD是平行四边形的面积为8,AE=EB,∴S△ADE=S四边形ABCD=2,∴S四边形EBCD=8-2=6.(1)作线段AB的垂直平分线MN交AB于点E,点E即为所求.(2)求出△ADE的面积即可.本题考查作图-复杂作图,平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.---------------------------------------------------------------------第5题参考答案:解:(1)设每辆小客车的座位数是x个,每辆大客车的座位数是y个,根据题意可得:,解得:.答:每辆大客车的座位数是40个,每辆小客车的座位数是25个;(2)设租用a辆小客车才能将所有参加活动的师生装载完成,则25a+40(10-a)≥310+40,解得:a≤3,符合条件的a最大整数为3.答:最多租用小客车3辆.(1)根据题意结合每辆大客车的座位数比小客车多15个以及师生共301人参加一次大型公益活动,分别得出等式求出答案;(2)根据(1)中所求,进而利用总人数为310+40,进而得出不等式求出答案.此题主要考查了一元一次不等式的应用以及二元一次方程组的应用,正确得出不等关系是解题关键.---------------------------------------------------------------------第6题参考答案:解:(1)∵直线y=-x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2-4x+3;(2)∵y=x2-4x+3=(x-2)2-1,∴抛物线对称轴为x=2,P(2,-1),设M(2,t),且C(0,3),∴MC==,MP=|t+1|,PC==2,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=-1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=-1+2或t=-1-2,此时M(2,-1+2)或(2,-1-2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,-1+2)或(2,-1-2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2-4x+3),则F(x,-x+3),∵0<x<3,∴EF=-x+3-(x2-4x+3)=-x2+3x,∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(-x2+3x)=-(x-)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,-),即当E点坐标为(,-)时,△CBE的面积最大.(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.本题为二次函数的综合应用,涉及待定系数法、勾股定理、等腰三角形的性质、三角形的面积、二次函数的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中设出M点的坐标,利用等腰三角形的性质得到关于M点坐标的方程是解题的关键,在(3)中用E点坐标表示出△CBE的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.---------------------------------------------------------------------第7题参考答案:(1)证明:∵△BCO中,BO=CO,∴∠B=∠BCO,在Rt△BCE中,∠2+∠B=90°,又∵∠1=∠2,∴∠1+∠BCO=90°,即∠FCO=90°,∴CF是⊙O的切线;
(2)证明:∵AB是⊙O直径,∴∠ACB=∠FCO=90°,∴∠ACB-∠BCO=∠FCO-∠BCO,即∠3=∠1,∴∠3=∠2,∵∠4=∠D,∴△ACM∽△DCN;
(3)解:∵⊙O的半径为4,即AO=CO=BO=4,在Rt△COE中,cos∠BOC=,∴OE=CO•cos∠BOC=4×=1,由此可得:BE=3,AE=5,由勾股定理可得:CE===,AC===2,BC===2,∵AB是⊙O直径,AB⊥C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度牛肉产品绿色认证与环保标识合同4篇
- 二零二五版暖通设备研发与制造合同4篇
- 2025年度农业品牌授权合作合同范本4篇
- 2025年度婴幼儿奶粉线上线下融合营销合作合同范本
- 2025年度门脸房屋租赁与新能源汽车充电站建设合同4篇
- 2025年度土地流转收益分配合同示范文本
- 二零二五年度房地产公司打字员招聘合同4篇
- 二零二五年度互联网+期权合约合同范本4篇
- 二零二五年度智能安防系统技术服务合同协议书2篇
- 2025年度苹果出口贸易合同模板4篇
- 七上-动点、动角问题12道好题-解析
- 2024年九省联考新高考 数学试卷(含答案解析)
- 红色历史研学旅行课程设计
- 下运动神经元损害综合征疾病演示课件
- 北师大版三年级数学(上册)看图列式计算(完整版)
- 2023中考地理真题(含解析)
- 麻醉药品、精神药品月检查记录表
- 浙江省宁波市海曙区2022学年第一学期九年级期末测试科学试题卷(含答案和答题卡)
- 高考英语词汇3500电子版
- 建院新闻社成立策划书
- JJF 1101-2019环境试验设备温度、湿度参数校准规范
评论
0/150
提交评论