版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年安徽省阜阳市临泉县一中高二上数学期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设为实数,则曲线:不可能是()A.抛物线 B.双曲线C.圆 D.椭圆2.两圆与的公切线有()A.1条 B.2条C.3条 D.4条3.已知椭圆:,左、右焦点分别为,过的直线交椭圆于两点,若的最大值为5,则的值是A.1 B.C. D.4.已知函数对于任意的满足,其中是函数的导函数,则下列各式正确的是()A. B.C. D.5.设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为8,则的焦距的最小值为()A.4 B.8C.16 D.326.已知双曲线的离心率为,左焦点为F,实轴右端点为A,虚轴上端点为B,则为()A.直角三角形 B.钝角三角形C.等腰三角形 D.锐角三角形7.已知双曲线的实轴长为10,则该双曲线的渐近线的斜率为()A. B.C. D.8.若,则x的值为()A.4 B.6C.4或6 D.89.已知椭圆的中心为,一个焦点为,在上,若是正三角形,则的离心率为()A. B.C. D.10.在直三棱柱中,侧面是边长为的正方形,,,且,则异面直线与所成的角为()A. B.C. D.11.“冰雹猜想”数列满足:,,若,则()A.4 B.3C.2 D.112.数列中前项和满足,若是递增数列,则的取值范围为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若“”是真命题,则实数的最小值为_____________.14.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为棱AA1,BB1的中点,G为棱A1B1上的一点,且A1G=(0<<2),则点G到平面D1EF的距离为____.15.总书记在2021年2月25日召开的全国脱贫攻坚总结表彰大会上发表重要讲话,庄严宣告,在迎来中国共产党成立一百周年的重要时刻,我国脱贫攻坚取得了全面胜利.在脱贫攻坚过程中,为了解某地农村经济情况,工作人员对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下列结论中所存确结论的序号是____________①该地农户家庭年收入低于4.5万元的农户比率估计为6%;②该地农户家庭年收入不低于10.5万元的农户比率估计为10%;③估计该地农户家庭年收入的平均值不超过6.5万元;④估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间16.用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是奇数的四位数,这样的四位数一共有___________个.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,四边形ABCD为正方形,PA⊥底面ABCD,,M,N分别为AB和PC的中点(1)求证:MN//平面PAD;(2)求平面MND与平面PAD的夹角的余弦值18.(12分)已知圆,P(2,0),M点是圆Q上任意一点,线段PM的垂直平分线交半径MQ于点C,当M点在圆上运动时,点C的轨迹为曲线C(1)求曲线C方程;(2)已知直线l:x=8,A、B是曲线C上的两点,且不在x轴上,,垂足为,,垂足为,若D(3,0),且的面积是△ABD面积的5倍,求△ABD面积的最大值19.(12分)已知数列的前项和为,,.(1)求的通项公式;(2)求数列的前项和;(3)若数列,,求前项和.20.(12分)设点P是曲线上的任意一点,k是该曲线在点P处的切线的斜率(1)求k的取值范围;(2)求当k取最大值时,该曲线在点P处的切线方程21.(12分)某班主任对全班名学生进行了作业量多少与手机网游的调查,数据如下表:认为作业多认为作业不多总数喜欢手机网游不喜欢手机网游总数(1)若随机地抽问这个班的一名学生,分别求事件“认为作业不多”和事件“喜欢手机网游且认为作业多”的概率;(2)若在“认为作业多”的学生中已经用分层抽样的方法选取了名学生.现要从这名学生中任取名学生了解情况,求其中恰有名“不喜欢手机网游”的学生的概率22.(10分)已知抛物线C:,直线l经过点,且与抛物线C交于M,N两点,其中.(1)若,且,求点M的坐标;(2)是否存在正数m,使得以MN为直径的圆经过坐标原点O,若存在,请求出正数m,若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据圆的方程、椭圆的方程、双曲线的方程和抛物线的方程特征即可判断.【详解】解:对A:因为曲线C的方程中都是二次项,所以根据抛物线标准方程的特征曲线C不可能是抛物线,故选项A正确;对B:当时,曲线C为双曲线,故选项B错误;对C:当时,曲线C为圆,故选项C错误;对D:当且时,曲线C为椭圆,故选项D错误;故选:A.2、D【解析】求得圆心坐标分别为,半径分别为,根据圆圆的位置关系的判定方法,得出两圆的位置关系,即可求解.【详解】由题意,圆与圆,可得圆心坐标分别为,半径分别为,则,所以,可得圆外离,所以两圆共有4条切线.故选:D.3、D【解析】由题意可知椭圆是焦点在x轴上的椭圆,利用椭圆定义得到|BF2|+|AF2|=8﹣|AB|,再由过椭圆焦点的弦中通径的长最短,可知当AB垂直于x轴时|AB|最小,把|AB|的最小值b2代入|BF2|+|AF2|=8﹣|AB|,由|BF2|+|AF2|的最大值等于5列式求b的值即可【详解】由0<b<2可知,焦点在x轴上,∵过F1的直线l交椭圆于A,B两点,则|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=8∴|BF2|+|AF2|=8﹣|AB|当AB垂直x轴时|AB|最小,|BF2|+|AF2|值最大,此时|AB|=b2,则5=8﹣b2,解得b,故选D【点睛】本题考查直线与圆锥曲线的关系,考查了椭圆的定义,考查椭圆的通径公式,考查计算能力,属于中档题4、C【解析】令,结合题意可得,利用导数讨论函数的单调性,进而得出,变形即可得出结果.【详解】令,则,又,所以,令,令,所以函数在上单调递减,在单调递增,所以,即,则.故选:C5、B【解析】因为,可得双曲线的渐近线方程是,与直线联立方程求得,两点坐标,即可求得,根据的面积为,可得值,根据,结合均值不等式,即可求得答案.【详解】双曲线的渐近线方程是直线与双曲线的两条渐近线分别交于,两点不妨设为在第一象限,在第四象限联立,解得故联立,解得故面积为:双曲线其焦距为当且仅当取等号的焦距的最小值:故选:B.【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.6、A【解析】根据三边的关系即可求出【详解】因,所以,而,,,所以,即,所以为直角三角形故选:A7、B【解析】利用双曲线的实轴长为,求出,即可求出该双曲线的渐近线的斜率.【详解】由题意,,所以,,所以双曲线的渐近线的斜率为.故选:B.【点睛】本题考查双曲线的方程与性质,考查学生的计算能力,属于基础题.8、C【解析】根据组合数的性质可求解.【详解】,或,即或.故选:C9、D【解析】根据是正三角形可得的坐标,代入方程后可求离心率.【详解】不失一般性,可设椭圆的方程为:,为半焦距,为右焦点,因为且,故,故,,整理得到,故,故选:D.10、C【解析】分析得出,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得异面直线与所成的角.【详解】由题意可知,,因为,,则,,因为平面,以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则点、、、,,,,因此,异面直线与所成的角为.故选:C.11、A【解析】根据题意分别假设为奇数、偶数的情况,求出对应的即可.【详解】由题意知,因为,若为奇数时,,与为奇数矛盾,不符合题意;若为偶数时,,可得,符合题意.不符合故选:A12、B【解析】由已知求得,再根据当时,,,可求得范围.【详解】解:因为,则,两式相减得,因为是递增数列,所以当时,,解得,又,,所以,解得,综上得,故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】若“”是真命题,则大于或等于函数在的最大值因为函数在上为增函数,所以,函数在上的最大值为1,所以,,即实数的最小值为1.所以答案应填:1.考点:1、命题;2、正切函数的性质.14、【解析】先证明A1B1∥平面D1EF,进而将问题转化为求点A1到平面D1EF的距离,然后建立空间直角坐标系,通过空间向量的运算求得答案.【详解】由题意得A1B1∥EF,A1B1⊄平面D1EF,EF⊂平面D1EF,所以A1B1∥平面D1EF,则点G到平面D1EF的距离等于点A1到平面D1EF的距离.以D为坐标原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴建立空间直角坐标系D-xyz,则D1(0,0,2),E(2,0,1),F(2,2,1),A1(2,0,2),所以,,.设平面D1EF的法向量为,则,令x=1,则y=0,z=2,所以平面D1EF的一个法向量.点A1到平面D1EF的距离==,即点G到平面D1EF的距离为.故答案为:.15、①②④【解析】利用频率分布直方图中频率的求解方法,通过求解频率即可判断选项①,②,④,利用平均值的计算方法,即可判断选项③【详解】解:对于①,该地农户家庭年收入低于4.5万元的农户比率为,故选项①正确;对于②,该地农户家庭年收入不低于10.5万元的农户比率为,故选项②正确;对于③,估计该地农户家庭年收入的平均值为万元,故选项③错误;对于④,家庭年收入介于4.5万元至8.5万元之间的频率为,故估计该地有一半以上的农户,其家庭年收入介于45万元至8.5万元之间,故选项④正确故答案为:①②④16、504【解析】分两种情况求解,一是四个数字中没有奇数,二是四个数字中有一个奇数,然后根据分类加法原理可求得结果【详解】当四个数字中没有奇数时,则这样的四位数有种,当四个数字中有一个奇数时,则从5个奇数中选一个奇数,再从4个偶数中选3个数,然后对这4个数排列即可,所以有种,所以由分类加法原理可得共有种,故答案为:504三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)在平面中构造与平行的直线,利用线线平行推证线面平行即可;(2)以为坐标原点建立空间直角坐标系,分别求得两个平面的法向量,利用向量法即可求得两个平面夹角的余弦值.【小问1详解】取中点为,连接,如下所示:因为为正方形,为中点,故可得//;在△中,因为分别为的中点,故可得//;故可得//,则四边形为平行四边形,即//,又面面,故//面.【小问2详解】因为面面,故可得,又底面为正方形,故可得,则两两垂直;故以为坐标原点,以分别为轴建立空间直角坐标系如下所示:故可得,设平面的法向量为,又则,即,不妨取,则,则,取面的法向量为,故.设平面的夹角为,故可得,即平面MND与平面PAD的夹角的余弦值为.18、(1)(2)【解析】(1)由定义法求出曲线C的方程;(2)先判断出直线AB过定点H(2,0)或H(4,0).当AB过定点H(4,0),求出最大;当H(2,0)时,可设直线AB:.用“设而不求法”表示出,不妨设(),利用函数的单调性求出△ABD面积的最大值.【小问1详解】因为线段PM的垂直平分线交半径MQ于点C,所以,所以,符合椭圆的定义,所以点C的轨迹为以P、Q为焦点的椭圆,其中,所以,所以曲线C的方程为.【小问2详解】不妨设直线l:x=8交x轴于G(8,0),直线AB交x轴于H(h,0),则,.因为,,,所以.又因为的面积是△ABD面积的5倍,所以.因为G(8,0),D(3,0),所以,所以H(2,0)或H(4,0).当H(4,0)时,则H与A(或H与B)重合,不妨设H与A重合,此时,,要使△ABD面积最大,只需B在短轴顶点时,=2最大,所以最大;当H(2,0)时,要想构成三角形ABD,直线AB的斜率不为0,可设直线AB:.设,则,消去x可得:,所以,,,所以.不妨设(),则,由对勾函数的性质可知,在上单调递减,所以当t=4时,,此时最大综上所述,△ABD面积的最大值为.【点睛】(1)“设而不求”是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题;(2)解析几何中最值计算方法有两类:①几何法:利用几何图形求最值;②代数法:表示为函数,利用函数求最值.19、(1)(2)(3)【解析】(1)由可求得的值,令,由可得,两式作差可推导出数列为等比数列,确定该数列的首项和公比,即可求得数列的通项公式;(2)求得,利用错位相减法可求得;(3)利用奇偶分组法,结合等差数列和等比数列的求和公式可求得.【小问1详解】解:当时,,可得,当时,由可得,上述两个等式作差得,可得,所以,数列是以为首项,以为公比的等比数列,故.【小问2详解】解:,所以,,所以,,上述两个等式作差得,因此,.【小问3详解】解:由题意可得,,所以,.20、(1)(2)【解析】(1)先求导数再求最值即可求解答案;(2)由(1)确定切点,从而也确定的斜率就可以求切线.【小问1详解】设,因为,所以,所以k的取值范围为【小问2详解】由(1)知,此时,即,所以此时曲线在点P处的切线方程为21、(1)事件“认为作业不多”和事件“喜欢手机网游且认为作业多”
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冶金企业安全生产交流材料考核试卷
- 智能消费设备的创新设计方法考核试卷
- 托儿所服务的科学与探索考核试卷
- 2024年石墨及炭素制品项目立项申请报告
- 2024-2030年中国畜禽养殖业需求规模与投资盈利前景预测报告
- 2024年VR虚拟项目申请报告
- 2024年液压砖机项目申请报告
- 2024-2030年中国物流市场运作模式调研规划研究报告
- 2024-2030年中国煤层气钻机行业发展前景预测及竞争策略分析报告
- 2024-2030年中国烘道项目可行性研究报告
- 质控图与质控规则
- 小学科学月相变化(课堂PPT)
- 《登泰山记》理解性默写-精心整理
- 经纬度计算和转换工具
- 大口径三通、大小头理论重量表
- 模具开发DFMEA失效模式分析
- 翁秀美窗外的树阅读题答案
- THL520电话交换机说明书
- 职工食堂承包投标书范本
- 色谱柱Agilent安捷伦化色谱柱介绍
- 不动产登记表.doc
评论
0/150
提交评论