2023-2024学年北京市西城区市级名校数学高二上期末经典试题含解析_第1页
2023-2024学年北京市西城区市级名校数学高二上期末经典试题含解析_第2页
2023-2024学年北京市西城区市级名校数学高二上期末经典试题含解析_第3页
2023-2024学年北京市西城区市级名校数学高二上期末经典试题含解析_第4页
2023-2024学年北京市西城区市级名校数学高二上期末经典试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年北京市西城区市级名校数学高二上期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数在上有两个极值点,则下列选项中不正确的为()A. B.C. D.2.已知函数.若数列的前n项和为,且满足,,则的最大值为()A.9 B.12C.20 D.3.已知椭圆的左顶点为,上顶点为,右焦点为,若,则椭圆的离心率的取值范围是()A. B.C. D.4.已知点P在抛物线上,点Q在圆上,则的最小值为()A. B.C. D.5.已知函数在处取得极值,则()A. B.C. D.6.如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A,B,交其准线于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为()A.y2=9x B.y2=6xC.y2=3x D.y2=x7.从集合中任取两个不同元素,则这两个元素相差的概率为()A. B.C. D.8.在正方体中,分别是线段的中点,则点到直线的距离是()A. B.C. D.9.给出如下四个命题正确的是()①方程表示的图形是圆;②椭圆的离心率;③抛物线的准线方程是;④双曲线的渐近线方程是A.③ B.①③C.①④ D.②③④10.已知,则下列不等式一定成立的是()A. B.C. D.11.数列满足,,则()A. B.C. D.212.在各项均为正数等比数列中,若成等差数列,则=()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.曲线在x=1处的切线方程为__________.14.已知曲线在点处的切线方程是,则的值为______15.底面半径为1,母线长为2的圆锥的体积为______16.已知点为双曲线,右支上一点,,为双曲线的左、右焦点,点为线段上一点,的角平分线与线段交于点,且满足,则________;若为线段的中点且,则双曲线的离心率为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在△中,角A,B,C的对边分别为a,b,c,已知,,.(1)求的大小及△的面积;(2)求的值.18.(12分)(1)证明:;(2)已知:,,且,求证:.19.(12分)已知数列{an}是一个等差数列,且a2=1,a5=-5.(1)求{an}的通项an;(2)求{an}前n项和Sn的最大值20.(12分)已知函数(1)若函数的图象在点处的切线与平行,求b的值;(2)在(1)的条件下证明:21.(12分)设集合(1)若,求;(2)设,若是成立的必要不充分条件,求实数a的取值范围22.(10分)计算:(1)求函数(a,b为正常数)的导数(2)已知点P在曲线上,为曲线在点P处的切线的倾斜角,则的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求导,根据题意可得,从而可得出答案.【详解】解:,因为函数在上有两个极值点,所以,即.所以ABD正确,C错误.故选:C.2、C【解析】先得到及递推公式,要想最大,则分两种情况,负数且最小或为正数且最大,进而求出最大值.【详解】①,当时,,当时,②,所以①-②得:,整理得:,所以,或,当是公差为2的等差数列,且时,最小,最大,此时,所以,此时;当且是公差为2的等差数列时,最大,最大,此时,所以,此时综上:的最大值为20故选:C【点睛】方法点睛:数列相关的最值求解,要结合题干条件,使用不等式放缩,函数单调性或导函数等进行求解.3、B【解析】根据题意得到,根据,化简得到,进而得到离心率的不等式,即可求解.【详解】由题意,椭圆的左顶点为,上顶点为,所以,,因为,可得,即,又由,可得,可得,解得,又因为椭圆的离心率,所以,即椭圆的离心率为.故选:B.【点睛】求解椭圆或双曲线离心率的三种方法:1、定义法:通过已知条件列出方程组,求得得值,根据离心率的定义求解离心率;2、齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;3、特殊值法:通过取特殊值或特殊位置,求出离心率.4、C【解析】先计算抛物线上的点P到圆心距离的最小值,再减去半径即可.【详解】设,由圆心,得,∴时,,∴故选:C.5、B【解析】根据极值点处导函数为零可求解.【详解】因为,则,由题意可知.经检验满足题意故选:B6、C【解析】过点A,B分别作准线的垂线,交准线于点E,D,设|BF|=a,利用抛物线的定义和平行线的性质、直角三角形求解【详解】如图,过点A,B分别作准线的垂线,交准线于点E,D,设|BF|=a,则由已知得|BC|=2a,由抛物线定义得|BD|=a,故∠BCD=30°,在直角三角形ACE中,因为|AE|=|AF|=3,|AC|=3+3a,2|AE|=|AC|,所以3+3a=6,从而得a=1,|FC|=3a=3,所以p=|FG|=|FC|=,因此抛物线的方程为y2=3x,故选:C.7、B【解析】一一列出所有基本事件,然后数出基本事件数和有利事件数,代入古典概型的概率计算公式,即可得解.【详解】解:从集合中任取两个不同元素的取法有、、、、、共6种,其中满足两个元素相差的取法有、、共3种.故这两个元素相差的概率为.故选:B.8、A【解析】以为坐标原点,分别以的方向为轴的正方向,建立空间直角坐标系,然后,列出计算公式进行求解即可【详解】如图,以为坐标原点,分别以的方向为轴的正方向,建立空间直角坐标系.因为,所以,所以,则点到直线的距离故选:A9、A【解析】对选项①,根据圆一般方程求解即可判断①错误,对选项②,求出椭圆离心率即可判断②错误,对③,求出抛物线渐近线即可判断③正确,对④,求出双曲线渐近线方程即可判断④错误。【详解】对于①选项,,,故①错误;对于②选项,由题知,所以,所以离心率,故②错误;对于③选项,抛物线化为标准形式得抛物线,故准线方程是,故③正确;对于④选项,双曲线化为标准形式得,所以,焦点在轴上,故渐近线方程是,故④错误.故选:A10、B【解析】运用不等式的性质及举反例的方法可求解.详解】对于A,如,满足条件,但不成立,故A不正确;对于B,因为,所以,所以,故B正确;对于C,因为,所以,所以不成立,故C不正确;对于D,因为,所以,所以,故D不正确.故选:B11、C【解析】根据已知分析数列周期性,可得答案【详解】解:∵数列满足,,∴,,,,故数列以4为周期呈现周期性变化,由,故,故选C【点睛】本题考查的知识点是数列的递推公式,数列的周期性,难度中档12、A【解析】利用等差中项的定义以及等比数列的通项公式即可求解.【详解】设等比数列的公比为,∵成等差数列,∴,即,解得或(舍去),∴,故选:.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据导数的几何意义求切线方程的斜率并求出,再由点斜式写出切线方程即可.【详解】由题设,,则,而,所以在x=1处的切线方程为,即.故答案为:.14、11【解析】根据给定条件结合导数的几何意义直接计算作答.【详解】因曲线在点处的切线方程是,则,,所以.故答案为:1115、【解析】先由勾股定理求圆锥的高,再结合圆锥的体积公式运算即可得解.【详解】解:设圆锥的高为,由勾股定理可得,由圆锥的体积可得,故答案为.【点睛】本题考查了圆锥的体积公式,重点考查了勾股定理,属基础题.16、①.②.【解析】过作,交于点,作,交于点,由向量共线定理可得;再由角平分线性质定理和双曲线的定义、结合余弦定理和离心率公式,可得所求值【详解】解:过作交于点,作交于点,由,得,由角平分线定理;因为为的中点,所以,由双曲线的定义,,所以,,,在中,由余弦定理,所以.故答案为:;.【点睛】本题考查双曲线的定义、方程和性质,以及角平分线的性质定理和余弦定理的运用,考查方程思想和运算能力,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),△的面积为;(2).【解析】(1)应用余弦定理求的大小,由三角形面积公式求△的面积;(2)由(1)及正弦定理的边角关系可得,即可求目标式的值.【小问1详解】在△中,由余弦定理得:,又,则.所以△的面积为.【小问2详解】由(1)得:,由正弦定理得:,则,所以.18、(1)证明见解析;(2)证明见解析.【解析】(1)利用分析法证明即可;(2)将与相乘,展开后利用基本不等式可证明所证不等式成立.【详解】(1)要证成立,即证,即证,即证,而显然成立,故成立;(2)已知,,且,则,当且仅当时,等号成立,故.19、(1)an=-2n+5.(2)4【解析】(Ⅰ)设{an}的公差为d,由已知条件,,解出a1=3,d=-2所以an=a1+(n-1)d=-2n+5(Ⅱ)Sn=na1+d=-n2+4n=-(n-2)2+4,所以n=2时,Sn取到最大值420、(1);(2)证明见解析.【解析】(1)由题意可得,从而可求出,(2)先构造函数,利用导数可求得对任意恒成立,对任意恒成立,从而将问题转化为只需证对任意恒成立,再次构造函数,利用导数求出其最大值小于等于即可【详解】(1)解:∵函数的图象在点处的切线与平行,∴,解得;证明:(2)由(1)得即对任意恒成立,令,则,∵当时,,∴函数在上单调递增,∵,∴对任意恒成立,即对任意恒成立,∴只需证对任意恒成立即可,即只需证对任意恒成立,令,则,由单调递减,且知,函数在上单调递增,在上单调递减,∴,∴得证,故不等式对任意恒成立21、(1)(2)【解析】(1)根据不等式的解答求得,当时,求得,结合集合并集的运算,即可求解;(2)由题意得到是的真子集,根据集合间的包含关系,列出不等式组,即可求解.【小问1详解】解:由,解得,即,当时,可得,所以.【小问2详解】解:由集合,因为,且是成立的必要不充分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论