![上海市宝山区行知中学2022-2023学年高三第一次调查研究考试数学试题_第1页](http://file4.renrendoc.com/view/9c54a1b7d55411270e05174510b0806e/9c54a1b7d55411270e05174510b0806e1.gif)
![上海市宝山区行知中学2022-2023学年高三第一次调查研究考试数学试题_第2页](http://file4.renrendoc.com/view/9c54a1b7d55411270e05174510b0806e/9c54a1b7d55411270e05174510b0806e2.gif)
![上海市宝山区行知中学2022-2023学年高三第一次调查研究考试数学试题_第3页](http://file4.renrendoc.com/view/9c54a1b7d55411270e05174510b0806e/9c54a1b7d55411270e05174510b0806e3.gif)
![上海市宝山区行知中学2022-2023学年高三第一次调查研究考试数学试题_第4页](http://file4.renrendoc.com/view/9c54a1b7d55411270e05174510b0806e/9c54a1b7d55411270e05174510b0806e4.gif)
![上海市宝山区行知中学2022-2023学年高三第一次调查研究考试数学试题_第5页](http://file4.renrendoc.com/view/9c54a1b7d55411270e05174510b0806e/9c54a1b7d55411270e05174510b0806e5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市宝山区行知中学2022-2023学年高三第一次调查研究考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设分别为双曲线的左、右焦点,过点作圆的切线,与双曲线的左、右两支分别交于点,若,则双曲线渐近线的斜率为()A. B. C. D.2.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是().A.收入最高值与收入最低值的比是B.结余最高的月份是月份C.与月份的收入的变化率与至月份的收入的变化率相同D.前个月的平均收入为万元3.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?根据上述问题的已知条件,若该女子共织布尺,则这位女子织布的天数是()A.2 B.3 C.4 D.14.已知函数的定义域为,则函数的定义域为()A. B.C. D.5.下列函数中,值域为的偶函数是()A. B. C. D.6.由曲线围成的封闭图形的面积为()A. B. C. D.7.函数的图象在点处的切线为,则在轴上的截距为()A. B. C. D.8.某个命题与自然数有关,且已证得“假设时该命题成立,则时该命题也成立”.现已知当时,该命题不成立,那么()A.当时,该命题不成立 B.当时,该命题成立C.当时,该命题不成立 D.当时,该命题成立9.已知集合,集合,则()A. B. C. D.10.已知函数满足当时,,且当时,;当时,且).若函数的图象上关于原点对称的点恰好有3对,则的取值范围是()A. B. C. D.11.已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,,则当时,的最大值是()A.8 B.9 C.10 D.1112.如图,在中,,是上一点,若,则实数的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.甲,乙两队参加关于“一带一路”知识竞赛,甲队有编号为1,2,3的三名运动员,乙队有编号为1,2,3,4的四名运动员,若两队各出一名队员进行比赛,则出场的两名运动员编号相同的概率为______.14.已知为椭圆的左、右焦点,点在椭圆上移动时,的内心的轨迹方程为__________.15.已知矩形ABCD,AB=4,BC=3,以A,B为焦点,且过C,D两点的双曲线的离心率为____________.16.已知,记,则的展开式中各项系数和为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(为常数)(Ⅰ)当时,求的单调区间;(Ⅱ)若为增函数,求实数的取值范围.18.(12分)在一次电视节目的答题游戏中,题型为选择题,只有“A”和“B”两种结果,其中某选手选择正确的概率为p,选择错误的概率为q,若选择正确则加1分,选择错误则减1分,现记“该选手答完n道题后总得分为”.(1)当时,记,求的分布列及数学期望;(2)当,时,求且的概率.19.(12分)已知,分别是椭圆:的左,右焦点,点在椭圆上,且抛物线的焦点是椭圆的一个焦点.(1)求,的值:(2)过点作不与轴重合的直线,设与圆相交于A,B两点,且与椭圆相交于C,D两点,当时,求△的面积.20.(12分)如图,在直角中,,通过以直线为轴顺时针旋转得到().点为斜边上一点.点为线段上一点,且.(1)证明:平面;(2)当直线与平面所成的角取最大值时,求二面角的正弦值.21.(12分)在直角坐标系中,曲线的参数方程为(为参数),为上的动点,点满足,点的轨迹为曲线.(Ⅰ)求的方程;(Ⅱ)在以为极点,轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为,与的异于极点的交点为,求.22.(10分)椭圆的左、右焦点分别为,椭圆上两动点使得四边形为平行四边形,且平行四边形的周长和最大面积分别为8和.(1)求椭圆的标准方程;(2)设直线与椭圆的另一交点为,当点在以线段为直径的圆上时,求直线的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
如图所示:切点为,连接,作轴于,计算,,,,根据勾股定理计算得到答案.【详解】如图所示:切点为,连接,作轴于,,故,在中,,故,故,,根据勾股定理:,解得.故选:.【点睛】本题考查了双曲线的渐近线斜率,意在考查学生的计算能力和综合应用能力.2、D【解析】由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;结余最高为月份,为,故项正确;至月份的收入的变化率为至月份的收入的变化率相同,故项正确;前个月的平均收入为万元,故项错误.综上,故选.3、B【解析】
将问题转化为等比数列问题,最终变为求解等比数列基本量的问题.【详解】根据实际问题可以转化为等比数列问题,在等比数列中,公比,前项和为,,,求的值.因为,解得,,解得.故选B.【点睛】本题考查等比数列的实际应用,难度较易.熟悉等比数列中基本量的计算,对于解决实际问题很有帮助.4、A【解析】试题分析:由题意,得,解得,故选A.考点:函数的定义域.5、C【解析】试题分析:A中,函数为偶函数,但,不满足条件;B中,函数为奇函数,不满足条件;C中,函数为偶函数且,满足条件;D中,函数为偶函数,但,不满足条件,故选C.考点:1、函数的奇偶性;2、函数的值域.6、A【解析】
先计算出两个图像的交点分别为,再利用定积分算两个图形围成的面积.【详解】封闭图形的面积为.选A.【点睛】本题考察定积分的应用,属于基础题.解题时注意积分区间和被积函数的选取.7、A【解析】
求出函数在处的导数后可得曲线在处的切线方程,从而可求切线的纵截距.【详解】,故,所以曲线在处的切线方程为:.令,则,故切线的纵截距为.故选:A.【点睛】本题考查导数的几何意义以及直线的截距,注意直线的纵截距指直线与轴交点的纵坐标,因此截距有正有负,本题属于基础题.8、C【解析】
写出命题“假设时该命题成立,则时该命题也成立”的逆否命题,结合原命题与逆否命题的真假性一致进行判断.【详解】由逆否命题可知,命题“假设时该命题成立,则时该命题也成立”的逆否命题为“假设当时该命题不成立,则当时该命题也不成立”,由于当时,该命题不成立,则当时,该命题也不成立,故选:C.【点睛】本题考查逆否命题与原命题等价性的应用,解题时要写出原命题的逆否命题,结合逆否命题的等价性进行判断,考查逻辑推理能力,属于中等题.9、D【解析】
可求出集合,,然后进行并集的运算即可.【详解】解:,;.故选.【点睛】考查描述法、区间的定义,对数函数的单调性,以及并集的运算.10、C【解析】
先作出函数在上的部分图象,再作出关于原点对称的图象,分类利用图像列出有3个交点时满足的条件,解之即可.【详解】先作出函数在上的部分图象,再作出关于原点对称的图象,如图所示,当时,对称后的图象不可能与在的图象有3个交点;当时,要使函数关于原点对称后的图象与所作的图象有3个交点,则,解得.故选:C.【点睛】本题考查利用函数图象解决函数的交点个数问题,考查学生数形结合的思想、转化与化归的思想,是一道中档题.11、B【解析】
根据题意计算,,,解不等式得到答案.【详解】∵是以1为首项,2为公差的等差数列,∴.∵是以1为首项,2为公比的等比数列,∴.∴.∵,∴,解得.则当时,的最大值是9.故选:.【点睛】本题考查了等差数列,等比数列,f分组求和,意在考查学生对于数列公式方法的灵活运用.12、C【解析】
由题意,可根据向量运算法则得到(1﹣m),从而由向量分解的唯一性得出关于t的方程,求出t的值.【详解】由题意及图,,又,,所以,∴(1﹣m),又t,所以,解得m,t,故选C.【点睛】本题考查平面向量基本定理,根据分解的唯一性得到所求参数的方程是解答本题的关键,本题属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
出场运动员编号相同的事件显然有3种,计算出总的基本事件数,由古典概型概率计算公式求得答案.【详解】甲队有编号为1,2,3的三名运动员,乙队有编号为1,2,3,4的四名运动员,出场的两名运动员编号相同的事件数为3,出现的基本事件总数,则出场的两名运动员编号相同的概率为.故答案为:【点睛】本题考查求古典概率的概率问题,属于基础题.14、【解析】
考查更为一般的问题:设P为椭圆C:上的动点,为椭圆的两个焦点,为△PF1F2的内心,求点I的轨迹方程.解法一:如图,设内切圆I与F1F2的切点为H,半径为r,且F1H=y,F2H=z,PF1=x+y,PF2=x+z,,则.直线IF1与IF2的斜率之积:,而根据海伦公式,有△PF1F2的面积为因此有.再根据椭圆的斜率积定义,可得I点的轨迹是以F1F2为长轴,离心率e满足的椭圆,其标准方程为.解法二:令,则.三角形PF1F2的面积:,其中r为内切圆的半径,解得.另一方面,由内切圆的性质及焦半径公式得:从而有.消去θ得到点I的轨迹方程为:.本题中:,代入上式可得轨迹方程为:.15、2【解析】
根据为焦点,得;又求得,从而得到离心率.【详解】为焦点在双曲线上,则又本题正确结果:【点睛】本题考查利用双曲线的定义求解双曲线的离心率问题,属于基础题.16、【解析】
根据定积分的计算,得到,令,求得,即可得到答案.【详解】根据定积分的计算,可得,令,则,即的展开式中各项系数和为.【点睛】本题主要考查了定积分的应用,以及二项式定理的应用,其中解答中根据定积分的计算和二项式定理求得的表示是解答本题的关键,着重考查了运算与求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)单调递增区间为,;单调递减区间为;(Ⅱ).【解析】
(Ⅰ)对函数进行求导,利用导数判断函数的单调性即可;(Ⅱ)对函数进行求导,由题意知,为增函数等价于在区间恒成立,利用分离参数法和基本不等式求最值即可求出实数的取值范围.【详解】(Ⅰ)由题意知,函数的定义域为,当时,,令,得,或,所以,随的变化情况如下表:递增递减递增的单调递增区间为,,单调递减区间为.(Ⅱ)由题意得在区间恒成立,即在区间恒成立.,当且仅当,即时等号成立.所以,所以的取值范围是.【点睛】本题考查利用导数求函数的单调区间、利用分离参数法和基本不等式求最值求参数的取值范围;考查运算求解能力和逻辑推理能力;利用导数把函数单调性问题转化为不等式恒成立问题是求解本题的关键;属于中档题、常考题型.18、(1)见解析,0(2)【解析】
(1)即该选手答完3道题后总得分,可能出现的情况为3道题都答对,答对2道答错1道,答对1道答错2道,3道题都答错,进而求解即可;(2)当时,即答完8题后,正确的题数为5题,错误的题数是3题,又,则第一题答对,第二题第三题至少有一道答对,进而求解.【详解】解:(1)的取值可能为,,1,3,又因为,故,,,,所以的分布列为:13所以(2)当时,即答完8题后,正确的题数为5题,错误的题数是3题,又已知,第一题答对,若第二题回答正确,则其余6题可任意答对3题;若第二题回答错误,第三题回答正确,则后5题可任意答对题,此时的概率为(或).【点睛】本题考查二项分布的分布列及期望,考查数据处理能力,考查分类讨论思想.19、(1);(2).【解析】
(1)由已知根据抛物线和椭圆的定义和性质,可求出,;(2)设直线方程为,联立直线与圆的方程可以求出,再联立直线和椭圆的方程化简,由根与系数的关系得到结论,继而求出面积.【详解】(1)焦点为F(1,0),则F1(1,0),F2(1,0),,解得,=1,=1,(Ⅱ)由已知,可设直线方程为,,联立得,易知△>0,则===因为,所以=1,解得联立,得,△=8>0设,则【点睛】本题主要考查抛物线和椭圆的定义与性质应用,同时考查利用根与系数的关系,解决直线与圆,直线与椭圆的位置关系问题.意在考查学生的数学运算能力.20、(1)见解析;(2)【解析】
(1)先算出的长度,利用勾股定理证明,再由已知可得,利用线面垂直的判定定理即可证明;(2)由(1)可得为直线与平面所成的角,要使其最大,则应最小,可得为中点,然后建系分别求出平面的法向量即可算得二面角的余弦值,进一步得到正弦值.【详解】(1)在中,,由余弦定理得,∴,∴,由题意可知:∴,,,∴平面,平面,∴,又,∴平面.(2)以为坐标原点,以,,的方向为,,轴的正方向,建立空间直角坐标系.∵平面,∴在平面上的射影是,∴与平面所成的角是,∴最大时,即,点为中点.,,,,,,,设平面的法向量,由,得,令,得,所以平面的法向量,同理,设平面的法向量,由,得,令,得,所以平面的法向量,∴,,故二面角的正弦值为.【点睛】本题考查线面垂直的判定定理以及利用向量法求二面角的正弦值,考查学生的运算求解能力,是一道中档题.21、(Ⅰ)(为参数);(Ⅱ)【解析】
(Ⅰ)设点,,则,代入化简得到答案.(Ⅱ)分别计算,的极坐标方程为,,取代入计算得到答案.【详解】(Ⅰ)设点,,,故,故的参
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小孩改姓名申请书
- 音乐与情绪模板
- 创意学习的力量
- 四川省成都市2024-2025学年八年级上学期期末语文试题(解析版)
- 202X战略总结与展望
- 学生证申请书范文
- 初级银行业法律法规与综合能力-初级银行从业资格考试《法律法规与综合能力》高频考点1
- 初级银行业法律法规与综合能力-初级银行从业资格考试《法律法规与综合能力》彩蛋押题2
- 初级银行管理-银行专业初级《银行管理》预测试卷4
- 初级银行管理-2021年6月初级银行从业资格考试《银行管理》真题汇编
- 无纸化会议系统解决方案
- 佛教空性与缘起课件
- 上海铁路局劳动安全“八防”考试题库(含答案)
- 《愿望的实现》教学设计
- 效率提升和品质改善方案
- 中山大学抬头信纸中山大学横式便笺纸推荐信模板a
- 无形资产评估完整版课件
- 义务教育学科作业设计与管理指南
- 《汽车发展史》PPT课件(PPT 75页)
- 常暗之厢(7规则-简体修正)
- 反诈骗防诈骗主题教育宣传图文PPT教学课件
评论
0/150
提交评论