RFS-使用机器学习和大数据预测期权价格_第1页
RFS-使用机器学习和大数据预测期权价格_第2页
RFS-使用机器学习和大数据预测期权价格_第3页
RFS-使用机器学习和大数据预测期权价格_第4页
RFS-使用机器学习和大数据预测期权价格_第5页
已阅读5页,还剩108页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Downloadedfrom

/rfs/article/36/9/3548/7056660byRenminUniversityuseron15October2023

OptionReturnPredictabilitywithMachineLearningandBigData

TuranG.Bali

GeorgetownUniversity,USA

HeinerBeckmeyer

UniversityofMünster,Germany

MathisMörke

UniversityofSt.Gallen,Switzerland

FlorianWeigert

UniversityofNeuchâtel,Switzerland

Drawinguponmorethan12millionobservationsovertheperiodfrom1996to2020,wefindthatallowingfornonlinearitiessignificantlyincreasestheout-of-sampleperformanceofoptionandstockcharacteristicsinpredictingfutureoptionreturns.Thenonlinearmachinelearningmodelsgeneratestatisticallyandeconomicallysizableprofitsinthelong-shortportfoliosofequityoptionsevenafteraccountingfortransactioncosts.Althoughoption-basedcharacteristicsarethemostimportantstandalonepredictors,stock-basedmeasuresoffersubstantialincrementalpredictivepowerwhenconsideredalongsideoption-basedcharacteristics.Finally,weprovidecompellingevidencethatoptionreturnpredictabilityisdrivenbyinformationalfrictionsandoptionmispricing.(JELG10,G12,G13,G14)

ReceivedNovember8,2021;editorialdecisionJanuary19,2023byEditorStefanoGiglio.AuthorshavefurnishedanInternetAppendix,whichisavailableontheOxfordUniversityPressWebsitenexttothelinktothefinalpublishedpaperonline.

Wearegratefultotheeditor,StefanoGiglio,andtwoanonymousrefereesfortheirconstructiveandinsightfulcomments.WealsobenefitedfromdiscussionswithManuelAmmann,NicoleBranger,JieCao,JeromeDetemple,IliasFilippou,AmitGoyal,AlexanderKempf,SebastianoManzan,AndreasNeuhierl,SethPruitt,AlbertoRossi,PaulSöderlind,SebastianStöckl,YinanSu,AllanTimmermann,MartinWallmeier,GuofuZhou,andseminarparticipantsattheVirtualDerivativesPhDWorkshoporganizedbytheUniversityofIllinoisUrbana-ChampaignandMichiganStateUniversity,the14thAnnualHedgeFundConferenceatImperialCollege,theannualmeetingoftheGermanAcademicAssociationofBusinessResearch2022,theSFIResearchDays2022,aninternalseminaratGoldmanSachs,aninternalseminaratHullTacticalAssetAllocation,theBVI-CFR2021seminar,theFederalReserveBoard,GeorgetownUniversity,theUniversityofFribourg,theUniversityofLiechtenstein,theUniversityofMinnesota,andtheUniversityofMuenster.FlorianWeigertisalsoaffiliatedwiththeCentreofFinancialResearch(CFR)Cologneandthankfulfortheircontinuoussupport.

Supplementary

datacanbefoundonTheReviewofFinancialStudieswebsite.SendcorrespondencetoTuranG.Bali,McDonoughSchoolofBusiness,GeorgetownUniversity,37thandOStreetsNW,Washington,DC20057,USA;telephone:(202)687-5388;e-mail:turan.bali@.

TheReviewofFinancialStudies36(2023)3548–3602

©TheAuthor(s)2023.PublishedbyOxfordUniversityPressonbehalfofTheSocietyforFinancialStudies.

Allrightsreserved.Forpermissions,pleasee-mail:journals.permissions@.

/10.1093/rfs/hhad017AdvanceAccesspublicationFebruary24

,2023

OptionReturnPredictabilitywithMachineLearningandBigData

3549

Downloadedfrom

/rfs/article/36/9/3548/7056660byRenminUniversityuseron15October2023

1

Theimportanceofoptionmarketshasgainedmomentumoverthepastdecade.AccordingtodatafromtheFuturesIndustryAssociation’s(FIA)annualstatisticalreview,optionstradingonexchangesworldwidehasincreasedfrom$9.42billioncontractsin2013to$21.22billioncontractsin2020,agrowthrateofmorethan125%.Approximately60%ofthesecontractsarewrittenonindividualstocksandstockindices,makingequitythemostpopularunderlyingassetoffinancialmarketparticipants.Giventhehighpopularityofoptionstradingbyinvestors,thequestionariseswhetherindividualoptionreturnsarepredictableand,ifyes,whichcharacteristicscangiverisetosuchpredictability.Ourpaperisdevotedtoansweringthesequestions.

Whileclassicaloptionpricingmodelsassumethatoptionsareredundant

assets(BlackandScholes

1973

),morerecentresearchrejectsthisideaandshowsthatoptionpricesdependonrisksotherthantheunderlying’sexposure

(BuraschiandJackwerth

2001

;

Garleanu,Pedersen,andPoteshman

2009

).Asanexample,

GoyalandSaretto

(2009

)documentthatthecrosssectionofoptionreturnsreflectsapremiumforvariancerisk,computedasthedifferencebetweenhistoricalrealizedvolatilityandat-the-moneyimpliedvolatility.Inthispaper,wefollowtheideaofcharacteristic-basedassetpricingandlinkfuturedelta-hedgedoptionreturnstoex-antecharacteristicsdrawnfrombothoptionsandstocks.Asweeliminatethedirectionalimpactofstockpricesthroughourhedgingprocedure,wefocusonrisksthatareinherentlynonlinearandarelikelytointeractwitheachotherincomplexways.Hence,thedescribedsetupisideallysuitedfortheapplicationofmachinelearningmodelsthatarenotonlyabletocapturetheimpactofnonlinearitiesandinteractionsbetweenalargesetofoptionandstockcharacteristics,butalsomitigatetheriskofin-samplemodeloverfitting.

WestudythecrosssectionofindividualU.S.equityoptionreturnsusingdatafromOptionMetricsIvyDBovertheperiodfromJanuary1996toDecember2020.Toabstractfromthedirectionalexposuretotheunderlying,wefollow

BakshiandKapadia

(2003

)andperformdailydelta-hedgesforeachoptionasthemarketcloses.Ourmainvariableofinterestisthemonthlyexcessdelta-hedgedoptionreturn.Afteraccountingfordifferentfilteringtechniques,ourdatasetconsistsofmorethan12millionoption-monthreturnobservationsofcallsandputs,allwrittenonindividualU.S.stocks.

Topredictfutureoptionreturns,weuseatotalof273variablescom-posedof80option-basedcharacteristics(e.g.,optionilliquidity,time-to-maturity,andtheimpliedshortingfee)and193stock-basedcharacteristics

.1

Thestockcharacteristicsincludethe94predictorvariablesproposedby

Optioncharacteristicsoperateonthreedifferentlevels:First,theycanbethesameforalloptionsonthesameunderlyingstock(e.g.,thevarianceriskpremiumby

GoyalandSaretto

[2009

]).Second,theycanbeclassifiedontheindividualoptioncontractlevel(e.g.,theoptionsmaturity).Third,theycanbecategorizedonabucket

TheReviewofFinancialStudies/v36n92023

3550

Downloadedfrom

/rfs/article/36/9/3548/7056660byRenminUniversityuseron15October2023

Green,Hand,andZhang

(2017

)topredictthecrosssectionofstockreturns,90industrydummies,andadditionalcharacteristicsthathavebeenshowntobesignificantlyassociatedwithfuturestockreturns(suchasthebearbetaproposedby

LuandMurray

[2019

],defaultriskof

VasquezandXiao

[2021

],

andtheunderlying’sclosepricefollowing

Eisdorfer,Goyal,and

Zhdanov[2022

]).Inthesamefashionas

Gu,Kelly,andXiu

(2020

),weapplydifferentlinearandnonlinearmachinelearningmodelstoformoptimalpredictionsbasedontheseoption-andstock-basedcharacteristics.Linearmodelsincludedarepenalizedregressionmodels(Ridge,Lasso,andElastic-Net)anddimensionalityreductionregressions(principalcomponentandpartialleastsquares).Nonlinearmodelscomprisegradient-boostedregressiontreeswithandwithoutdropout,randomforests,andfully-connectedfeed-forwardneuralnetworks.Wealsocomputeequal-weightedensemblesofalllinearandallnonlinearmodelstocombinetheinformationalcontentoftheindividualmodels.

Toassessthepredictivepowerofthedifferentmodelsforindividualoptionreturns,wefollow

Gu,Kelly,andXiu

(2020

)andusetheout-of-sampleR2-statistic,whichbenchmarkstheR2againstaforecastofzeroexcessreturns

.2

Tomakepairwisecomparisonsoftheforecastaccuracyofdifferentmachinelearningmodels,weutilizethemodel-free

DieboldandMariano

(1995

)teststatistic.

Ourempiricalresultsadvancetheknowledgeonpredictabilityofthecrosssectionofindividualoptionreturnsinvariousdimensions:First,weshowthatcomplexityofthepredictionmodelmatters.Whilenoneofthelinearmodelsmanagestoproducepositiveout-of-sampleR2sfortheentiretestingsample,allnonlinearmodelsdo.Ourresultsrevealthatthebest-performingmodelsaregradient-boostedregressiontreeswithandwithoutdropout(GBRandDart)producingout-of-sampleR2sof2.26%and1.96%

.3

Moreover,theequal-weightedensembleofallnonlinearmodels(denotedN-En)outperformstheensembleofalllinearmodels(denotedL-En)bymorethan1.7%inout-of-sampleR2predictionpower.Ourresultsareconfirmedwhenwecomparepairwiseforecastaccuracyusing

DieboldandMariano

(1995

)tests:Theensembleofallnonlinearmodelsbeatsallothermodelsandmostothermodelswithstatisticalsignificanceatthe5%level(theonlyexceptionstothisfindingareGBR,Dart,andfeed-forwardneuralnetworks,whichallproduceforecastshighlycorrelatedwiththenonlinearensemblemodel(correlationsamountto

level(e.g.,theoptionbucket’stradingvolume),wherebucketsareformedbasedonthemoneynessandtime-to-maturityoftheoption.

2Inaddition,weapplythe

Hanetal.

(2021

)cross-sectionalout-of-sampleR2,whichfocusesonhowwellamodelpredictscross-sectionaloptionreturnspreads.

3NotethatthemagnitudeoftheseR2sisconsiderablyhigherthanthecorrespondingnumbersforthecrosssectionofstockreturns,forexample,

Gu,Kelly,andXiu

(2020

)findanout-sampleR2ofapproximately0.6%fornonlinearmachinelearningmodels.Thisdiscrepancymaybedrivenbythedifferent(andshorter)sampleperiodthatweconsider,whichisrestrictedbytheavailabilityofinformationonsingleequityoptions.

OptionReturnPredictabilitywithMachineLearningandBigData

3551

Downloadedfrom

/rfs/article/36/9/3548/7056660byRenminUniversityuseron15October2023

0.95,0.93,and0.77,respectively).Theoutperformanceofnonlinearmodelscomparedtolinearmodelsisstableovertimewithahigherpredictabilityforfutureoptionreturnsin69.8%ofthemonthsinoursample(86.0%whenconsideringthecross-sectionalout-of-sampleR2).Notably,wealsofindbetterpredictionsforthenonlinearmodelsduringtheDecember2019–December2020period,inwhichtheCOVID-19pandemicshookfinancialmarkets

worldwide.4

Thehigherpredictabilityofnonlinearmodelsnotonlyholdsforthecompletesetofoptionsinvestigatedinoursample,butalsofordifferentoptionbuckets,suchasoptionssortedbymaturity(i.e.,short-termandlong-termoptions)andmoneyness(i.e.,out-of-themoney,at-the-money,andin-the-moneyoptions).

Second,weinspectwhetherpredictabilityofoptionreturnsthroughmachinelearningmodelscanbeexploitedinaneconomicallyprofitabletradingstrategy.Ourresultsindicatethatthelong-shortportfoliosbasedonL-En’sandN-En’sforecastsofexpectedreturnsgenerateeconomicallysignificantreturnspreadsof1.30%and2.04%permonth,respectively,bothstatisticallysignificantatthe1%level

.5

Thelong-shortreturnspreadofthenonlinearensembleoutperformsthereturnspreadofthelinearensemblebyastatisticallysignificant0.74%permonth,stressingtheimportanceofnonlinearities.Thisresultholdsalsoforthesubsetofcallandputoptionsseparately,doesnotdependonearningsannouncements,andpersistsovertime.Moreover,theprofitabilityofthelong-shortreturnspreadofthenonlinearensembleexceedsexistingandnewlyproposedmeasuresofexpectedreturnbenchmarksandisrobusttoriskadjustmentsofestablishedassetpricingmodels,accountingfortime-varyingleverage,aswellaschangesinthelengthofthetrainingwindow,return

frequency,anddifferentsamplesofbigandliquidstocksonwhichoptionscanbetraded.Theresultsalsoremainsignificantacrossdifferentstatesoftheeconomy.

Diggingdeeperintothecompositionsofthedifferentspreadportfolios,wefindthattheshortlegcontainsmoreputsandshort-termoptionsthanthelongleg.Interestingly,theshortlegofthespreadportfolioalsodisplaysstrongdifferencesfromtheotherportfoliosintermsofcomplexityofthecharacteristicsthatdeterminetheallocationofoptionsintoportfolios.Inthissense,optionsthatareselectedintheshortlegaredeterminedbytheleastnumberofcharacteristics,buthavethehighestnumberofnonlinearitiesand

interactioneffectsamongthesecharacteristics.

Ofek,Richardson,andWhitelaw(2004

)showthattransactioncostsin

theoptionsmarketarehighandthatthesecostscansubstantiallyreduceeconomicprofitsofoption-basedtradingstrategies.Hence,tounderstand

4

Dew-BeckerandGiglio

(2020

)showthattheCOVID-19epidemicismarkedbyanextraordinarilyhighlevelofcross-sectionaluncertainty,asmeasuredbystockoptionsonindividualfirms.Similarlevelsofcross-sectionaluncertaintyhaveonlybeenwitnessedduringthetechboomandthefinancialcrisis.

5TherespectivemonthlySharperatiosamountto1.03and1.28.

TheReviewofFinancialStudies/v36n92023

3552

Downloadedfrom

/rfs/article/36/9/3548/7056660byRenminUniversityuseron15October2023

6

7

8

howfarthemachinelearningtradingstrategybasedonthenonlinearensembleisimplementable,weexamineitsprofitabilityafteraccountingfortransactioncosts.SinceactualtransactioncostsoftradesarenotobservableintheOptionMetricsIvyDBdatabase,weassumethatinvestorshavetopay25%–100%ofthequotedbidandaskspread,whichwedenoteastheeffective

spread(Eisdorfer,Goyal,andZhdanov

2022

).Inaddition,weincorporatethecostsoftradingwiththedelta-hedgingprocedurebyaccountingforasimilar

percentageoftheunderlying’squotedspread.6

Ourresultsshowthatthereturnsofthenonlinearmachinelearningtradingstrategyremainsizable(0.67%permonth)evenifinvestorshavetopaythefulleffectivespreadfortransactionsanddelta-

hedgingonalloptions.7

Marginsareanimportantconsiderationwheninvestingintheoptionsmarket.Ontopofthetransactioncostsarisingfrombid-askspreads,wealsoincludedifferentmarginrequirementsforsettinguphedgedlongandshortoptionpositions.RealizedreturnsandSharperatiosofthepredictionsmadebythenonlinearensembledecrease,butonlyturninsignificantiftheinvestorhadtopay100%ofthequotedspreadforeachoptionanddelta-hedge.Importantly,thepredictionsbythenonlinearensemblesignificantlyoutperformthosebyitslinearcounterpartinallcases.

Asourthirdmainempiricalresult,wequantifytherelativeimportanceofdifferentcharacteristicsforthepredictionofoptionreturns.Wefollowrecent

advancesincomputerscienceandestimateSHAPvalues(LundbergandLee

2017

),whichapproximatechangesinthemodelpredictionshadweexcludedcertaincharacteristicsinitsestimation.Todoso,weclassifyour273optionandstockpredictorvariablesinto12subgroups:Accruals,Industry,Investment,Profitability,Quality,Value,Contract,Frictions,Illiquidity,InformedTrading,PastPrices,andRisk.Ourresultsrevealthatthecontractgroupcontainsthemostimportantpredictors,whichincludeinformationabouttheoption’slocationontheunderlying’simpliedvolatilitysurface.Illiquidityandriskmeasuresfollowasthesecondandthirdmostimportantvariablegroup,respectively.Withrespecttotherelativeimportanceofsinglecharacteristics,wefindthatimpliedvolatilityplaysbyfarthemostimportantrole,followedbythebid-askspreadoftheunderlyingstockandindustrymomentum.Ifweassessthefunctionalformoftheimpactofthethreemostimportantsinglecharacteristicsonthemodel-predicteddelta-hedgedreturn,ourresultsrevealthathigherimpliedvolatilitynegativelyaffectsreturns,whereashigherbid-ask

spreadsandindustrymomentumpredictreturnspositively.8

Tosimulatearealisticinvestmentprocess,weaddanestimateofthetransactioncostsatthetimeofthetradeinitiationtothereturnpredictionandthensortoptionsintodecileportfolios.

Itisimportanttonotethatinthiscase(i.e.,100%effectivespreadfortransactioncostsanddelta-hedging),wedonotobserveanoutperformanceofthetradingstrategybasedonlinearmachinelearningmodelsanymore.Thisagainillustratestheimportanceofincorporatingnonlinearitiesandinteractionswhenformingoptionportfolios.

Investigatingthisfunctionalformrevealsthateachofthe10mostimportantcharacteristicsaffectsreturnsinanonlinearfashion.

OptionReturnPredictabilitywithMachineLearningandBigData

3553

Downloadedfrom

/rfs/article/36/9/3548/7056660byRenminUniversityuseron15October2023

Ourempiricalsettingenablesustoanswerwhetheroptionorstockcharacteristicsaremoreimportanttoaccuratelypredictfutureoptionreturns.Hence,wereestimatethemachinelearningmodelsusingonly(i)option-basedcharacteristics,(ii)stock-basedcharacteristics,aswellas(iii)option-basedcharacteristicsthatoperateonthebucketorcontractlevel,andcomparetheout-of-sampleforecastingresultswiththefullinformationsetofalloptionand

stockcharacteristics.9

Weobservethatthemodelsonlybasedonasubsetofinformationshowseverelylowerout-of-sampleR2scomparedtothosethatincorporatealloptionandstockcharacteristics.Whencomparingdifferentsubsetsofinformation,ourresultsindicatethatrestrictinginformationtoonlyoption-basedcharacteristicsyieldssubstantiallyhigherpredictiveR2sthaninformationononlystock-basedcharacteristics.However,thebenefitofaddingstock-basedtooption-basedcharacteristicsissubstantialandhelpstoobtainmoreaccurateforecastsforfutureoptionreturns.

Finally,wedeterminepossiblesourcesofoptionreturnpredictability.Wehypothesizethatoptionreturnpredictabilityoriginatespartlyasaresultofinformationalfrictions,suchthattheinformationimpliedfromstock-andoption-basedcharacteristicsisnotdirectlyincorporatedintooptionprices.Totestthisconjecture,wecreatedifferentindicesofinformationfrictionsbasedonstock-andoption-levelinformation.Inlinewithourprediction,wefindthatthepredictabilityofoptionreturnsincreaseswithhigherinformationalfrictions.Ourresultsrevealthattheout-of-sampleR2forthenonlinearensemblemodelequals5.32%(0%)foroptionswhoseunderlyingsfallwithinthehighest(lowest)quintileofstock-levelinformationfrictions.Optionsexhibitingthehighest(lowest)levelofinformationfrictionsshowanR2of4.00%(1.36%).Wealsoestimatethelevelofmispricingperoptioncontract,againusingacompositemispricingscore.Consistentwiththeintuitionthatmachinelearningmodelsmanagetoidentifymisvaluationintheoptionsmarket,overallpredictabilityisincreasinginthemispricingscore.

1.RelatedLiterature

Ourpapercontributestotheliteratureonpredictingandexplainingthecrosssectionofindividualoptionreturns.

DennisandMayhew

(2002

)documenttheimportanceofvariousfactors,suchasbeta,size,andtradingvolume,inexplainingtherisk-neutralvolatilityskewobservedinstockoptionprices,whereas

BollenandWhaley

(2004

)investigatetherelationbetweennetbuyingpressureandtheshapeoftheimpliedvolatilityfunctionofstockoptions.

Garleanu,Pedersen,andPoteshman

(2009

)theoreticallymodelandempiricallyinvestigatedemandpressureeffectsonoptionprices.Byexaminingvolatilityriskintheoptionsmarket,

GoyalandSaretto

(2009

)findthatoptions

9IncontrasttothefeatureimportancebymeansofSHAPvalues,thisapproachhasthebenefitofcorrectlyaccountingforinteractioneffectsbetweendifferentfeaturegroups.

TheReviewofFinancialStudies/v36n92023

3554

Downloadedfrom

/rfs/article/36/9/3548/7056660byRenminUniversityuseron15October2023

withalargepositivedifferencebetweenrealizedandimpliedvolatilityhavelowfuturedelta-hedgedreturns.

Roll,Schwartz,andSubrahmanyam

(2010

)examinetradingvolumeinoptionmarketsrelativetothevolumeinunderlyingstocksandrelateittocontemporaneousreturns.

CaoandHan

(2013

)showthatdelta-hedgedoptionreturnsdecreasemonotonicallywithanincreaseintheidiosyncraticvolatilityoftheunderlyingstock.

BaliandMurray

(2013

)findastrongnegativerelationbetweenrisk-neutralskewnessanddelta-andvega-neutralequityoptionreturns,consistentwithapositiveskewnesspreference.

Anetal.

(2014

)showthatthecrosssectionofstockreturnspredictsfuturechangesinoptionimpliedvolatilities.

ByunandKim

(2016

)findthatcalloptionswrittenonthemostlottery-likestocksunderperformotherwisesimilarcallo

ptionsontheleastlottery-likestocks.

Christoffersen,Fournier,and

Jacobs(2018

)showthatequityoptionsdisplayastrongfactorstructure,whichishighlycorrelatedtothevolatility,skew,andtermstructureofS&P500indexoptions.

Christoffersenetal.

(2018

)includeilliquiditypremiainoptionvaluationmodelsand

Kanne,Korn,andUhrig-Homburg

(2022

)findthatthesepremiaarenegative(positive)ifthereisnetbuying(selling)pressure.

RamachandranandTayal

(2021

)examinetheimpactofshort-saleconstraintsonthepricingofoptions.

Zhanetal.

(2021

)uncoverreturnpredictabilityinthecrosssectionofdelta-hedgedequityoptionsbasedonstock-basedinformation,suchasprices,profitmargins,andfirmprofitability.

Hestonetal.(Forthcoming

)investigatethephenomenonofoptionmomen-tumandreversal.Incontrasttotheirstudy,whichfocusesonextractingtradingsignalsfromtheinsightthatoptionsthatappreciatedoveracertainpasthorizontendtocontinuetodosointhefuture,weareagnosticaboutwhichcharacteristicsexplainfutureoptionreturnsandinsteadproposeawaytoextractinformationsimultaneouslyfrom273optionandstockcharacteristics.Finally,

GoyenkoandZhang

(2021

)applymachinelearningtechniquestoanalyzewhichcharacteristicsdriveoptionandstockreturns.

Wealsoextendtheliteratureontheusageofmachinelearningtechniquesinempiricalassetpricing.Sofar,themajorityofpapersapplymachinelearningmodelstopredictthecrosssectionofindividualstockreturns

.10

Rapach,Strauss,andZhou

(2013

)useLassoinpredictingmarketreturnsacrosscountries,while

MoritzandZimmermann

(2016

)applytree-basedconditionalportfoliosortstoexaminetherelationbetweenpastandfuturestockreturns.

Kelly,Pruitt,andSu

(2019

)applyinstrumentedprincipalcomponentanalysis(IPCA),detailedin

Kelly,Pruitt,andSu

(2020

),tomodelthecrosssectionofreturnsthatallowforlatentfactorsandtime-varyingloadings.

Gu,Kelly,andXiu(2020

)performacomparativeanalysisofmachinelearningmethodstomeasureequityriskpremiabasedonalargesetofstockcharacteristics.Theauthorsuseabroadsetofstockcharacteristics,

10

Nagel

(2021

)providesanoverviewofmachinelearningmethodsandthechallengesinvolvedwhenapplyingthemtoquestionsinempiricalassetpricing.

3555

Downloadedfrom

/rfs/article/36/9/3548/7056660byRenminUniversityuseron15October2023

OptionReturnPredictabilitywithMachineLearningandBigData

following

Green,Hand,andZhang

(2017

),whereas

Murray,Xiao,andXia

(2021

)focussolelyonhistoricalpricedata.

Neuhierletal.

(2021

)examinethepredictivepowerofoptioncharacteristicsforthecrosssectionofstockreturns.

Kozak,Nagel,andSantosh

(2020

)imposeaneconomicallymotivatedprioronstochasticdiscountfactorcoefficientsthatshrinkscontributionsoflow-varianceprincipalcomponentsforthecrosssectionofstockreturns,and

Chen,Pelger,andZhu

(Forthcoming

)addtotheseinsights,usingdeepneuralnetworkst

oestimateanassetpricingmodelforindividualstockreturns.

Martin

andNagel(2022

)showthatassetreturnsmayappearpredictablein-samplewhenanalyzingtheeconomyex-postandstresstheimportanceofout-of-sampletests.

Feng,Giglio,andXiu

(2020

)proposeanewmodelselectionmethodthataccountsformodelselectionmistakesthatproduceabiasduetoomittedvariables,and

LettauandPelger

(2020

)constructanewestimatorthatgeneralizesprinciplecomponentanalysisbyincludingapenaltyonthepricingerrorinexpectedreturns.Anonparametricmethodtodissectcharacteristicsbased

ontheadaptivegroupLassoisproposedby

Freyberger,Neuhierl,and

Weber(2020

).

Giglio,Liao,andXiu

(2021

)perform“thousandsofalphatests”todevelopanewframeworktorigorouslyperformmultiplehypothesistestinginlinearassetpricingmodels.

Grammigetal.

(2020

)contrasttheory-basedandmachinelearningmethodsformeasuringstockriskpremia.

TheaforementionedstudieshavemainlyfocusedonthecrosssectionofU.S.stocks.

Leippold,Wang,andZhou

(2021

),instead,employmachinelearningalgorithmstoanalyzereturnpredictionfactorsintheChinesestockmarket.Recentresearchalsoexpandstheapplicationofmachinelearningmodelsforthepredictionofotherassetclasses:

Kelly,Palhares,andPruitt

(Forthcoming

)proposeaconditionalfactormodelforcorporatebondsreturnsbasedontheIPCAapproach.

Hull,Li,andQiao

(2023

)buildapredictivemodelofbreakevenimpliedvolatilitiesofS&P500indexoptions.

Balietal.

(2021

)findthatmachinelearningmodelssubstantiallyimprovetheout-of-sampleperformanceofstockandbondcharacteristicswhenpredictingthecrosssectionofcorporatebondretu

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论