版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Downloadedfrom
/rfs/article/36/9/3548/7056660byRenminUniversityuseron15October2023
OptionReturnPredictabilitywithMachineLearningandBigData
TuranG.Bali
GeorgetownUniversity,USA
HeinerBeckmeyer
UniversityofMünster,Germany
MathisMörke
UniversityofSt.Gallen,Switzerland
FlorianWeigert
UniversityofNeuchâtel,Switzerland
Drawinguponmorethan12millionobservationsovertheperiodfrom1996to2020,wefindthatallowingfornonlinearitiessignificantlyincreasestheout-of-sampleperformanceofoptionandstockcharacteristicsinpredictingfutureoptionreturns.Thenonlinearmachinelearningmodelsgeneratestatisticallyandeconomicallysizableprofitsinthelong-shortportfoliosofequityoptionsevenafteraccountingfortransactioncosts.Althoughoption-basedcharacteristicsarethemostimportantstandalonepredictors,stock-basedmeasuresoffersubstantialincrementalpredictivepowerwhenconsideredalongsideoption-basedcharacteristics.Finally,weprovidecompellingevidencethatoptionreturnpredictabilityisdrivenbyinformationalfrictionsandoptionmispricing.(JELG10,G12,G13,G14)
ReceivedNovember8,2021;editorialdecisionJanuary19,2023byEditorStefanoGiglio.AuthorshavefurnishedanInternetAppendix,whichisavailableontheOxfordUniversityPressWebsitenexttothelinktothefinalpublishedpaperonline.
Wearegratefultotheeditor,StefanoGiglio,andtwoanonymousrefereesfortheirconstructiveandinsightfulcomments.WealsobenefitedfromdiscussionswithManuelAmmann,NicoleBranger,JieCao,JeromeDetemple,IliasFilippou,AmitGoyal,AlexanderKempf,SebastianoManzan,AndreasNeuhierl,SethPruitt,AlbertoRossi,PaulSöderlind,SebastianStöckl,YinanSu,AllanTimmermann,MartinWallmeier,GuofuZhou,andseminarparticipantsattheVirtualDerivativesPhDWorkshoporganizedbytheUniversityofIllinoisUrbana-ChampaignandMichiganStateUniversity,the14thAnnualHedgeFundConferenceatImperialCollege,theannualmeetingoftheGermanAcademicAssociationofBusinessResearch2022,theSFIResearchDays2022,aninternalseminaratGoldmanSachs,aninternalseminaratHullTacticalAssetAllocation,theBVI-CFR2021seminar,theFederalReserveBoard,GeorgetownUniversity,theUniversityofFribourg,theUniversityofLiechtenstein,theUniversityofMinnesota,andtheUniversityofMuenster.FlorianWeigertisalsoaffiliatedwiththeCentreofFinancialResearch(CFR)Cologneandthankfulfortheircontinuoussupport.
Supplementary
datacanbefoundonTheReviewofFinancialStudieswebsite.SendcorrespondencetoTuranG.Bali,McDonoughSchoolofBusiness,GeorgetownUniversity,37thandOStreetsNW,Washington,DC20057,USA;telephone:(202)687-5388;e-mail:turan.bali@.
TheReviewofFinancialStudies36(2023)3548–3602
©TheAuthor(s)2023.PublishedbyOxfordUniversityPressonbehalfofTheSocietyforFinancialStudies.
Allrightsreserved.Forpermissions,pleasee-mail:journals.permissions@.
/10.1093/rfs/hhad017AdvanceAccesspublicationFebruary24
,2023
OptionReturnPredictabilitywithMachineLearningandBigData
3549
Downloadedfrom
/rfs/article/36/9/3548/7056660byRenminUniversityuseron15October2023
1
Theimportanceofoptionmarketshasgainedmomentumoverthepastdecade.AccordingtodatafromtheFuturesIndustryAssociation’s(FIA)annualstatisticalreview,optionstradingonexchangesworldwidehasincreasedfrom$9.42billioncontractsin2013to$21.22billioncontractsin2020,agrowthrateofmorethan125%.Approximately60%ofthesecontractsarewrittenonindividualstocksandstockindices,makingequitythemostpopularunderlyingassetoffinancialmarketparticipants.Giventhehighpopularityofoptionstradingbyinvestors,thequestionariseswhetherindividualoptionreturnsarepredictableand,ifyes,whichcharacteristicscangiverisetosuchpredictability.Ourpaperisdevotedtoansweringthesequestions.
Whileclassicaloptionpricingmodelsassumethatoptionsareredundant
assets(BlackandScholes
1973
),morerecentresearchrejectsthisideaandshowsthatoptionpricesdependonrisksotherthantheunderlying’sexposure
(BuraschiandJackwerth
2001
;
Garleanu,Pedersen,andPoteshman
2009
).Asanexample,
GoyalandSaretto
(2009
)documentthatthecrosssectionofoptionreturnsreflectsapremiumforvariancerisk,computedasthedifferencebetweenhistoricalrealizedvolatilityandat-the-moneyimpliedvolatility.Inthispaper,wefollowtheideaofcharacteristic-basedassetpricingandlinkfuturedelta-hedgedoptionreturnstoex-antecharacteristicsdrawnfrombothoptionsandstocks.Asweeliminatethedirectionalimpactofstockpricesthroughourhedgingprocedure,wefocusonrisksthatareinherentlynonlinearandarelikelytointeractwitheachotherincomplexways.Hence,thedescribedsetupisideallysuitedfortheapplicationofmachinelearningmodelsthatarenotonlyabletocapturetheimpactofnonlinearitiesandinteractionsbetweenalargesetofoptionandstockcharacteristics,butalsomitigatetheriskofin-samplemodeloverfitting.
WestudythecrosssectionofindividualU.S.equityoptionreturnsusingdatafromOptionMetricsIvyDBovertheperiodfromJanuary1996toDecember2020.Toabstractfromthedirectionalexposuretotheunderlying,wefollow
BakshiandKapadia
(2003
)andperformdailydelta-hedgesforeachoptionasthemarketcloses.Ourmainvariableofinterestisthemonthlyexcessdelta-hedgedoptionreturn.Afteraccountingfordifferentfilteringtechniques,ourdatasetconsistsofmorethan12millionoption-monthreturnobservationsofcallsandputs,allwrittenonindividualU.S.stocks.
Topredictfutureoptionreturns,weuseatotalof273variablescom-posedof80option-basedcharacteristics(e.g.,optionilliquidity,time-to-maturity,andtheimpliedshortingfee)and193stock-basedcharacteristics
.1
Thestockcharacteristicsincludethe94predictorvariablesproposedby
Optioncharacteristicsoperateonthreedifferentlevels:First,theycanbethesameforalloptionsonthesameunderlyingstock(e.g.,thevarianceriskpremiumby
GoyalandSaretto
[2009
]).Second,theycanbeclassifiedontheindividualoptioncontractlevel(e.g.,theoptionsmaturity).Third,theycanbecategorizedonabucket
TheReviewofFinancialStudies/v36n92023
3550
Downloadedfrom
/rfs/article/36/9/3548/7056660byRenminUniversityuseron15October2023
Green,Hand,andZhang
(2017
)topredictthecrosssectionofstockreturns,90industrydummies,andadditionalcharacteristicsthathavebeenshowntobesignificantlyassociatedwithfuturestockreturns(suchasthebearbetaproposedby
LuandMurray
[2019
],defaultriskof
VasquezandXiao
[2021
],
andtheunderlying’sclosepricefollowing
Eisdorfer,Goyal,and
Zhdanov[2022
]).Inthesamefashionas
Gu,Kelly,andXiu
(2020
),weapplydifferentlinearandnonlinearmachinelearningmodelstoformoptimalpredictionsbasedontheseoption-andstock-basedcharacteristics.Linearmodelsincludedarepenalizedregressionmodels(Ridge,Lasso,andElastic-Net)anddimensionalityreductionregressions(principalcomponentandpartialleastsquares).Nonlinearmodelscomprisegradient-boostedregressiontreeswithandwithoutdropout,randomforests,andfully-connectedfeed-forwardneuralnetworks.Wealsocomputeequal-weightedensemblesofalllinearandallnonlinearmodelstocombinetheinformationalcontentoftheindividualmodels.
Toassessthepredictivepowerofthedifferentmodelsforindividualoptionreturns,wefollow
Gu,Kelly,andXiu
(2020
)andusetheout-of-sampleR2-statistic,whichbenchmarkstheR2againstaforecastofzeroexcessreturns
.2
Tomakepairwisecomparisonsoftheforecastaccuracyofdifferentmachinelearningmodels,weutilizethemodel-free
DieboldandMariano
(1995
)teststatistic.
Ourempiricalresultsadvancetheknowledgeonpredictabilityofthecrosssectionofindividualoptionreturnsinvariousdimensions:First,weshowthatcomplexityofthepredictionmodelmatters.Whilenoneofthelinearmodelsmanagestoproducepositiveout-of-sampleR2sfortheentiretestingsample,allnonlinearmodelsdo.Ourresultsrevealthatthebest-performingmodelsaregradient-boostedregressiontreeswithandwithoutdropout(GBRandDart)producingout-of-sampleR2sof2.26%and1.96%
.3
Moreover,theequal-weightedensembleofallnonlinearmodels(denotedN-En)outperformstheensembleofalllinearmodels(denotedL-En)bymorethan1.7%inout-of-sampleR2predictionpower.Ourresultsareconfirmedwhenwecomparepairwiseforecastaccuracyusing
DieboldandMariano
(1995
)tests:Theensembleofallnonlinearmodelsbeatsallothermodelsandmostothermodelswithstatisticalsignificanceatthe5%level(theonlyexceptionstothisfindingareGBR,Dart,andfeed-forwardneuralnetworks,whichallproduceforecastshighlycorrelatedwiththenonlinearensemblemodel(correlationsamountto
level(e.g.,theoptionbucket’stradingvolume),wherebucketsareformedbasedonthemoneynessandtime-to-maturityoftheoption.
2Inaddition,weapplythe
Hanetal.
(2021
)cross-sectionalout-of-sampleR2,whichfocusesonhowwellamodelpredictscross-sectionaloptionreturnspreads.
3NotethatthemagnitudeoftheseR2sisconsiderablyhigherthanthecorrespondingnumbersforthecrosssectionofstockreturns,forexample,
Gu,Kelly,andXiu
(2020
)findanout-sampleR2ofapproximately0.6%fornonlinearmachinelearningmodels.Thisdiscrepancymaybedrivenbythedifferent(andshorter)sampleperiodthatweconsider,whichisrestrictedbytheavailabilityofinformationonsingleequityoptions.
OptionReturnPredictabilitywithMachineLearningandBigData
3551
Downloadedfrom
/rfs/article/36/9/3548/7056660byRenminUniversityuseron15October2023
0.95,0.93,and0.77,respectively).Theoutperformanceofnonlinearmodelscomparedtolinearmodelsisstableovertimewithahigherpredictabilityforfutureoptionreturnsin69.8%ofthemonthsinoursample(86.0%whenconsideringthecross-sectionalout-of-sampleR2).Notably,wealsofindbetterpredictionsforthenonlinearmodelsduringtheDecember2019–December2020period,inwhichtheCOVID-19pandemicshookfinancialmarkets
worldwide.4
Thehigherpredictabilityofnonlinearmodelsnotonlyholdsforthecompletesetofoptionsinvestigatedinoursample,butalsofordifferentoptionbuckets,suchasoptionssortedbymaturity(i.e.,short-termandlong-termoptions)andmoneyness(i.e.,out-of-themoney,at-the-money,andin-the-moneyoptions).
Second,weinspectwhetherpredictabilityofoptionreturnsthroughmachinelearningmodelscanbeexploitedinaneconomicallyprofitabletradingstrategy.Ourresultsindicatethatthelong-shortportfoliosbasedonL-En’sandN-En’sforecastsofexpectedreturnsgenerateeconomicallysignificantreturnspreadsof1.30%and2.04%permonth,respectively,bothstatisticallysignificantatthe1%level
.5
Thelong-shortreturnspreadofthenonlinearensembleoutperformsthereturnspreadofthelinearensemblebyastatisticallysignificant0.74%permonth,stressingtheimportanceofnonlinearities.Thisresultholdsalsoforthesubsetofcallandputoptionsseparately,doesnotdependonearningsannouncements,andpersistsovertime.Moreover,theprofitabilityofthelong-shortreturnspreadofthenonlinearensembleexceedsexistingandnewlyproposedmeasuresofexpectedreturnbenchmarksandisrobusttoriskadjustmentsofestablishedassetpricingmodels,accountingfortime-varyingleverage,aswellaschangesinthelengthofthetrainingwindow,return
frequency,anddifferentsamplesofbigandliquidstocksonwhichoptionscanbetraded.Theresultsalsoremainsignificantacrossdifferentstatesoftheeconomy.
Diggingdeeperintothecompositionsofthedifferentspreadportfolios,wefindthattheshortlegcontainsmoreputsandshort-termoptionsthanthelongleg.Interestingly,theshortlegofthespreadportfolioalsodisplaysstrongdifferencesfromtheotherportfoliosintermsofcomplexityofthecharacteristicsthatdeterminetheallocationofoptionsintoportfolios.Inthissense,optionsthatareselectedintheshortlegaredeterminedbytheleastnumberofcharacteristics,buthavethehighestnumberofnonlinearitiesand
interactioneffectsamongthesecharacteristics.
Ofek,Richardson,andWhitelaw(2004
)showthattransactioncostsin
theoptionsmarketarehighandthatthesecostscansubstantiallyreduceeconomicprofitsofoption-basedtradingstrategies.Hence,tounderstand
4
Dew-BeckerandGiglio
(2020
)showthattheCOVID-19epidemicismarkedbyanextraordinarilyhighlevelofcross-sectionaluncertainty,asmeasuredbystockoptionsonindividualfirms.Similarlevelsofcross-sectionaluncertaintyhaveonlybeenwitnessedduringthetechboomandthefinancialcrisis.
5TherespectivemonthlySharperatiosamountto1.03and1.28.
TheReviewofFinancialStudies/v36n92023
3552
Downloadedfrom
/rfs/article/36/9/3548/7056660byRenminUniversityuseron15October2023
6
7
8
howfarthemachinelearningtradingstrategybasedonthenonlinearensembleisimplementable,weexamineitsprofitabilityafteraccountingfortransactioncosts.SinceactualtransactioncostsoftradesarenotobservableintheOptionMetricsIvyDBdatabase,weassumethatinvestorshavetopay25%–100%ofthequotedbidandaskspread,whichwedenoteastheeffective
spread(Eisdorfer,Goyal,andZhdanov
2022
).Inaddition,weincorporatethecostsoftradingwiththedelta-hedgingprocedurebyaccountingforasimilar
percentageoftheunderlying’squotedspread.6
Ourresultsshowthatthereturnsofthenonlinearmachinelearningtradingstrategyremainsizable(0.67%permonth)evenifinvestorshavetopaythefulleffectivespreadfortransactionsanddelta-
hedgingonalloptions.7
Marginsareanimportantconsiderationwheninvestingintheoptionsmarket.Ontopofthetransactioncostsarisingfrombid-askspreads,wealsoincludedifferentmarginrequirementsforsettinguphedgedlongandshortoptionpositions.RealizedreturnsandSharperatiosofthepredictionsmadebythenonlinearensembledecrease,butonlyturninsignificantiftheinvestorhadtopay100%ofthequotedspreadforeachoptionanddelta-hedge.Importantly,thepredictionsbythenonlinearensemblesignificantlyoutperformthosebyitslinearcounterpartinallcases.
Asourthirdmainempiricalresult,wequantifytherelativeimportanceofdifferentcharacteristicsforthepredictionofoptionreturns.Wefollowrecent
advancesincomputerscienceandestimateSHAPvalues(LundbergandLee
2017
),whichapproximatechangesinthemodelpredictionshadweexcludedcertaincharacteristicsinitsestimation.Todoso,weclassifyour273optionandstockpredictorvariablesinto12subgroups:Accruals,Industry,Investment,Profitability,Quality,Value,Contract,Frictions,Illiquidity,InformedTrading,PastPrices,andRisk.Ourresultsrevealthatthecontractgroupcontainsthemostimportantpredictors,whichincludeinformationabouttheoption’slocationontheunderlying’simpliedvolatilitysurface.Illiquidityandriskmeasuresfollowasthesecondandthirdmostimportantvariablegroup,respectively.Withrespecttotherelativeimportanceofsinglecharacteristics,wefindthatimpliedvolatilityplaysbyfarthemostimportantrole,followedbythebid-askspreadoftheunderlyingstockandindustrymomentum.Ifweassessthefunctionalformoftheimpactofthethreemostimportantsinglecharacteristicsonthemodel-predicteddelta-hedgedreturn,ourresultsrevealthathigherimpliedvolatilitynegativelyaffectsreturns,whereashigherbid-ask
spreadsandindustrymomentumpredictreturnspositively.8
Tosimulatearealisticinvestmentprocess,weaddanestimateofthetransactioncostsatthetimeofthetradeinitiationtothereturnpredictionandthensortoptionsintodecileportfolios.
Itisimportanttonotethatinthiscase(i.e.,100%effectivespreadfortransactioncostsanddelta-hedging),wedonotobserveanoutperformanceofthetradingstrategybasedonlinearmachinelearningmodelsanymore.Thisagainillustratestheimportanceofincorporatingnonlinearitiesandinteractionswhenformingoptionportfolios.
Investigatingthisfunctionalformrevealsthateachofthe10mostimportantcharacteristicsaffectsreturnsinanonlinearfashion.
OptionReturnPredictabilitywithMachineLearningandBigData
3553
Downloadedfrom
/rfs/article/36/9/3548/7056660byRenminUniversityuseron15October2023
Ourempiricalsettingenablesustoanswerwhetheroptionorstockcharacteristicsaremoreimportanttoaccuratelypredictfutureoptionreturns.Hence,wereestimatethemachinelearningmodelsusingonly(i)option-basedcharacteristics,(ii)stock-basedcharacteristics,aswellas(iii)option-basedcharacteristicsthatoperateonthebucketorcontractlevel,andcomparetheout-of-sampleforecastingresultswiththefullinformationsetofalloptionand
stockcharacteristics.9
Weobservethatthemodelsonlybasedonasubsetofinformationshowseverelylowerout-of-sampleR2scomparedtothosethatincorporatealloptionandstockcharacteristics.Whencomparingdifferentsubsetsofinformation,ourresultsindicatethatrestrictinginformationtoonlyoption-basedcharacteristicsyieldssubstantiallyhigherpredictiveR2sthaninformationononlystock-basedcharacteristics.However,thebenefitofaddingstock-basedtooption-basedcharacteristicsissubstantialandhelpstoobtainmoreaccurateforecastsforfutureoptionreturns.
Finally,wedeterminepossiblesourcesofoptionreturnpredictability.Wehypothesizethatoptionreturnpredictabilityoriginatespartlyasaresultofinformationalfrictions,suchthattheinformationimpliedfromstock-andoption-basedcharacteristicsisnotdirectlyincorporatedintooptionprices.Totestthisconjecture,wecreatedifferentindicesofinformationfrictionsbasedonstock-andoption-levelinformation.Inlinewithourprediction,wefindthatthepredictabilityofoptionreturnsincreaseswithhigherinformationalfrictions.Ourresultsrevealthattheout-of-sampleR2forthenonlinearensemblemodelequals5.32%(0%)foroptionswhoseunderlyingsfallwithinthehighest(lowest)quintileofstock-levelinformationfrictions.Optionsexhibitingthehighest(lowest)levelofinformationfrictionsshowanR2of4.00%(1.36%).Wealsoestimatethelevelofmispricingperoptioncontract,againusingacompositemispricingscore.Consistentwiththeintuitionthatmachinelearningmodelsmanagetoidentifymisvaluationintheoptionsmarket,overallpredictabilityisincreasinginthemispricingscore.
1.RelatedLiterature
Ourpapercontributestotheliteratureonpredictingandexplainingthecrosssectionofindividualoptionreturns.
DennisandMayhew
(2002
)documenttheimportanceofvariousfactors,suchasbeta,size,andtradingvolume,inexplainingtherisk-neutralvolatilityskewobservedinstockoptionprices,whereas
BollenandWhaley
(2004
)investigatetherelationbetweennetbuyingpressureandtheshapeoftheimpliedvolatilityfunctionofstockoptions.
Garleanu,Pedersen,andPoteshman
(2009
)theoreticallymodelandempiricallyinvestigatedemandpressureeffectsonoptionprices.Byexaminingvolatilityriskintheoptionsmarket,
GoyalandSaretto
(2009
)findthatoptions
9IncontrasttothefeatureimportancebymeansofSHAPvalues,thisapproachhasthebenefitofcorrectlyaccountingforinteractioneffectsbetweendifferentfeaturegroups.
TheReviewofFinancialStudies/v36n92023
3554
Downloadedfrom
/rfs/article/36/9/3548/7056660byRenminUniversityuseron15October2023
withalargepositivedifferencebetweenrealizedandimpliedvolatilityhavelowfuturedelta-hedgedreturns.
Roll,Schwartz,andSubrahmanyam
(2010
)examinetradingvolumeinoptionmarketsrelativetothevolumeinunderlyingstocksandrelateittocontemporaneousreturns.
CaoandHan
(2013
)showthatdelta-hedgedoptionreturnsdecreasemonotonicallywithanincreaseintheidiosyncraticvolatilityoftheunderlyingstock.
BaliandMurray
(2013
)findastrongnegativerelationbetweenrisk-neutralskewnessanddelta-andvega-neutralequityoptionreturns,consistentwithapositiveskewnesspreference.
Anetal.
(2014
)showthatthecrosssectionofstockreturnspredictsfuturechangesinoptionimpliedvolatilities.
ByunandKim
(2016
)findthatcalloptionswrittenonthemostlottery-likestocksunderperformotherwisesimilarcallo
ptionsontheleastlottery-likestocks.
Christoffersen,Fournier,and
Jacobs(2018
)showthatequityoptionsdisplayastrongfactorstructure,whichishighlycorrelatedtothevolatility,skew,andtermstructureofS&P500indexoptions.
Christoffersenetal.
(2018
)includeilliquiditypremiainoptionvaluationmodelsand
Kanne,Korn,andUhrig-Homburg
(2022
)findthatthesepremiaarenegative(positive)ifthereisnetbuying(selling)pressure.
RamachandranandTayal
(2021
)examinetheimpactofshort-saleconstraintsonthepricingofoptions.
Zhanetal.
(2021
)uncoverreturnpredictabilityinthecrosssectionofdelta-hedgedequityoptionsbasedonstock-basedinformation,suchasprices,profitmargins,andfirmprofitability.
Hestonetal.(Forthcoming
)investigatethephenomenonofoptionmomen-tumandreversal.Incontrasttotheirstudy,whichfocusesonextractingtradingsignalsfromtheinsightthatoptionsthatappreciatedoveracertainpasthorizontendtocontinuetodosointhefuture,weareagnosticaboutwhichcharacteristicsexplainfutureoptionreturnsandinsteadproposeawaytoextractinformationsimultaneouslyfrom273optionandstockcharacteristics.Finally,
GoyenkoandZhang
(2021
)applymachinelearningtechniquestoanalyzewhichcharacteristicsdriveoptionandstockreturns.
Wealsoextendtheliteratureontheusageofmachinelearningtechniquesinempiricalassetpricing.Sofar,themajorityofpapersapplymachinelearningmodelstopredictthecrosssectionofindividualstockreturns
.10
Rapach,Strauss,andZhou
(2013
)useLassoinpredictingmarketreturnsacrosscountries,while
MoritzandZimmermann
(2016
)applytree-basedconditionalportfoliosortstoexaminetherelationbetweenpastandfuturestockreturns.
Kelly,Pruitt,andSu
(2019
)applyinstrumentedprincipalcomponentanalysis(IPCA),detailedin
Kelly,Pruitt,andSu
(2020
),tomodelthecrosssectionofreturnsthatallowforlatentfactorsandtime-varyingloadings.
Gu,Kelly,andXiu(2020
)performacomparativeanalysisofmachinelearningmethodstomeasureequityriskpremiabasedonalargesetofstockcharacteristics.Theauthorsuseabroadsetofstockcharacteristics,
10
Nagel
(2021
)providesanoverviewofmachinelearningmethodsandthechallengesinvolvedwhenapplyingthemtoquestionsinempiricalassetpricing.
3555
Downloadedfrom
/rfs/article/36/9/3548/7056660byRenminUniversityuseron15October2023
OptionReturnPredictabilitywithMachineLearningandBigData
following
Green,Hand,andZhang
(2017
),whereas
Murray,Xiao,andXia
(2021
)focussolelyonhistoricalpricedata.
Neuhierletal.
(2021
)examinethepredictivepowerofoptioncharacteristicsforthecrosssectionofstockreturns.
Kozak,Nagel,andSantosh
(2020
)imposeaneconomicallymotivatedprioronstochasticdiscountfactorcoefficientsthatshrinkscontributionsoflow-varianceprincipalcomponentsforthecrosssectionofstockreturns,and
Chen,Pelger,andZhu
(Forthcoming
)addtotheseinsights,usingdeepneuralnetworkst
oestimateanassetpricingmodelforindividualstockreturns.
Martin
andNagel(2022
)showthatassetreturnsmayappearpredictablein-samplewhenanalyzingtheeconomyex-postandstresstheimportanceofout-of-sampletests.
Feng,Giglio,andXiu
(2020
)proposeanewmodelselectionmethodthataccountsformodelselectionmistakesthatproduceabiasduetoomittedvariables,and
LettauandPelger
(2020
)constructanewestimatorthatgeneralizesprinciplecomponentanalysisbyincludingapenaltyonthepricingerrorinexpectedreturns.Anonparametricmethodtodissectcharacteristicsbased
ontheadaptivegroupLassoisproposedby
Freyberger,Neuhierl,and
Weber(2020
).
Giglio,Liao,andXiu
(2021
)perform“thousandsofalphatests”todevelopanewframeworktorigorouslyperformmultiplehypothesistestinginlinearassetpricingmodels.
Grammigetal.
(2020
)contrasttheory-basedandmachinelearningmethodsformeasuringstockriskpremia.
TheaforementionedstudieshavemainlyfocusedonthecrosssectionofU.S.stocks.
Leippold,Wang,andZhou
(2021
),instead,employmachinelearningalgorithmstoanalyzereturnpredictionfactorsintheChinesestockmarket.Recentresearchalsoexpandstheapplicationofmachinelearningmodelsforthepredictionofotherassetclasses:
Kelly,Palhares,andPruitt
(Forthcoming
)proposeaconditionalfactormodelforcorporatebondsreturnsbasedontheIPCAapproach.
Hull,Li,andQiao
(2023
)buildapredictivemodelofbreakevenimpliedvolatilitiesofS&P500indexoptions.
Balietal.
(2021
)findthatmachinelearningmodelssubstantiallyimprovetheout-of-sampleperformanceofstockandbondcharacteristicswhenpredictingthecrosssectionofcorporatebondretu
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年购销合同:某钢铁企业向供应商订购0万吨原材料2篇
- 二零二五年度高铁站房PC构件预制及吊装工程合同2篇
- 二零二五年度物业管理顾问合同(含交通枢纽管理)2篇
- 二零二五版货车司机意外伤害赔偿合同范本3篇
- 二零二五年度绿色环保型二手房按揭交易合同模板3篇
- 二零二五食堂承包合同(大路食堂运营管理)3篇
- 二零二五版二手房买卖与家具选购代理合同3篇
- 税务局2025年度企业社会责任报告编制合同
- 二零二五年度智慧社区家居安装合同规范3篇
- 二零二五年度虫草科研合作与技术转移合同范本3篇
- 《新生儿预防接种》课件
- 小学五年级上册数学寒假作业每日一练
- DB1303T382-2024 创伤性休克患者护理指南
- 2024年03月内蒙古中国银行内蒙古分行春季校园招考笔试历年参考题库附带答案详解
- 2024-2025学年华东师大新版八年级上册数学期末复习试卷(含详解)
- 《道路车辆 48V供电电压的电气及电子部件 电性能要求和试验方法》文本以及编制说明
- 2024年新高考I卷数学高考试卷(原卷+答案)
- 十八项医疗核心制度考试题与答案
- 2024年鄂尔多斯市国资产投资控股集团限公司招聘管理单位遴选500模拟题附带答案详解
- 篝火晚会流程
- 船形乌头提取工艺优化
评论
0/150
提交评论