版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023届广西玉林市玉州区高三适应性数学试题考试试卷[1]注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知分别为双曲线的左、右焦点,过的直线与双曲线的左、右两支分别交于两点,若,则双曲线的离心率为()A. B.4 C.2 D.2.为了进一步提升驾驶人交通安全文明意识,驾考新规要求驾校学员必须到街道路口执勤站岗,协助交警劝导交通.现有甲、乙等5名驾校学员按要求分配到三个不同的路口站岗,每个路口至少一人,且甲、乙在同一路口的分配方案共有()A.12种 B.24种 C.36种 D.48种3.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足,其中星等为mk的星的亮度为Ek(k=1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为()A.1010.1 B.10.1 C.lg10.1 D.10–10.14.复数的虚部为()A. B. C.2 D.5.若双曲线的渐近线与圆相切,则双曲线的离心率为()A.2 B. C. D.6.中,点在边上,平分,若,,,,则()A. B. C. D.7.设,则()A. B. C. D.8.下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数除以正整数所得的余数是”记为“”,例如.执行该程序框图,则输出的等于()A.16 B.17 C.18 D.199.小张家订了一份报纸,送报人可能在早上之间把报送到小张家,小张离开家去工作的时间在早上之间.用表示事件:“小张在离开家前能得到报纸”,设送报人到达的时间为,小张离开家的时间为,看成平面中的点,则用几何概型的公式得到事件的概率等于()A. B. C. D.10.若x,y满足约束条件的取值范围是A.[0,6] B.[0,4] C.[6, D.[4,11.2019年10月1日上午,庆祝中华人民共和国成立70周年阅兵仪式在天安门广场隆重举行.这次阅兵不仅展示了我国的科技军事力量,更是让世界感受到了中国的日新月异.今年的阅兵方阵有一个很抢眼,他们就是院校科研方阵.他们是由军事科学院、国防大学、国防科技大学联合组建.若已知甲、乙、丙三人来自上述三所学校,学历分别有学士、硕士、博士学位.现知道:①甲不是军事科学院的;②来自军事科学院的不是博士;③乙不是军事科学院的;④乙不是博士学位;⑤国防科技大学的是研究生.则丙是来自哪个院校的,学位是什么()A.国防大学,研究生 B.国防大学,博士C.军事科学院,学士 D.国防科技大学,研究生12.若的展开式中的系数之和为,则实数的值为()A. B. C. D.1二、填空题:本题共4小题,每小题5分,共20分。13.已知数列是等比数列,,则__________.14.已知,满足约束条件则的最小值为__________.15.已知数列满足:点在直线上,若使、、构成等比数列,则______16.已知平面向量与的夹角为,,,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,直线的参数方程为(为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)把曲线向下平移个单位,然后各点横坐标变为原来的倍得到曲线(纵坐标不变),设点是曲线上的一个动点,求它到直线的距离的最小值.18.(12分)(Ⅰ)证明:;(Ⅱ)证明:();(Ⅲ)证明:.19.(12分)已知函数.(1)求不等式的解集;(2)若不等式对恒成立,求实数的取值范围.20.(12分)设数列,其前项和,又单调递增的等比数列,,.(Ⅰ)求数列,的通项公式;(Ⅱ)若,求数列的前n项和,并求证:.21.(12分)为了响应国家号召,促进垃圾分类,某校组织了高三年级学生参与了“垃圾分类,从我做起”的知识问卷作答随机抽出男女各20名同学的问卷进行打分,作出如图所示的茎叶图,成绩大于70分的为“合格”.(Ⅰ)由以上数据绘制成2×2联表,是否有95%以上的把握认为“性别”与“问卷结果”有关?男女总计合格不合格总计(Ⅱ)从上述样本中,成绩在60分以下(不含60分)的男女学生问卷中任意选2个,记来自男生的个数为,求的分布列及数学期望.附:0.1000.0500.0100.0012.7063.8416.63510.82822.(10分)在如图所示的多面体中,四边形是矩形,梯形为直角梯形,平面平面,且,,.(1)求证:平面.(2)求二面角的大小.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
由已知得,,由已知比值得,再利用双曲线的定义可用表示出,,用勾股定理得出的等式,从而得离心率.【详解】.又,可令,则.设,得,即,解得,∴,,由得,,,该双曲线的离心率.故选:A.【点睛】本题考查求双曲线的离心率,解题关键是由向量数量积为0得出垂直关系,利用双曲线的定义把双曲线上的点到焦点的距离都用表示出来,从而再由勾股定理建立的关系.2、C【解析】
先将甲、乙两人看作一个整体,当作一个元素,再将这四个元素分成3个部分,每一个部分至少一个,再将这3部分分配到3个不同的路口,根据分步计数原理可得选项.【详解】把甲、乙两名交警看作一个整体,个人变成了4个元素,再把这4个元素分成3部分,每部分至少有1个人,共有种方法,再把这3部分分到3个不同的路口,有种方法,由分步计数原理,共有种方案。故选:C.【点睛】本题主要考查排列与组合,常常运用捆绑法,插空法,先分组后分配等一些基本思想和方法解决问题,属于中档题.3、A【解析】
由题意得到关于的等式,结合对数的运算法则可得亮度的比值.【详解】两颗星的星等与亮度满足,令,.故选A.【点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及指数对数运算.4、D【解析】
根据复数的除法运算,化简出,即可得出虚部.【详解】解:=,故虚部为-2.故选:D.【点睛】本题考查复数的除法运算和复数的概念.5、C【解析】
利用圆心到渐近线的距离等于半径即可建立间的关系.【详解】由已知,双曲线的渐近线方程为,故圆心到渐近线的距离等于1,即,所以,.故选:C.【点睛】本题考查双曲线离心率的求法,求双曲线离心率问题,关键是建立三者间的方程或不等关系,本题是一道基础题.6、B【解析】
由平分,根据三角形内角平分线定理可得,再根据平面向量的加减法运算即得答案.【详解】平分,根据三角形内角平分线定理可得,又,,,,..故选:.【点睛】本题主要考查平面向量的线性运算,属于基础题.7、D【解析】
结合指数函数及对数函数的单调性,可判断出,,,即可选出答案.【详解】由,即,又,即,,即,所以.故选:D.【点睛】本题考查了几个数的大小比较,考查了指数函数与对数函数的单调性的应用,属于基础题.8、B【解析】
由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量的值,模拟程序的运行过程,代入四个选项进行验证即可.【详解】解:由程序框图可知,输出的数应为被3除余2,被5除余2的且大于10的最小整数.若输出,则不符合题意,排除;若输出,则,符合题意.故选:B.【点睛】本题考查了程序框图.当循环的次数不多,或有规律时,常采用循环模拟或代入选项验证的方法进行解答.9、D【解析】
这是几何概型,画出图形,利用面积比即可求解.【详解】解:事件发生,需满足,即事件应位于五边形内,作图如下:故选:D【点睛】考查几何概型,是基础题.10、D【解析】解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过C点时,函数取得最小值,由解得C(2,1),目标函数的最小值为:4目标函数的范围是[4,+∞).故选D.11、C【解析】
根据①③可判断丙的院校;由②和⑤可判断丙的学位.【详解】由题意①甲不是军事科学院的,③乙不是军事科学院的;则丙来自军事科学院;由②来自军事科学院的不是博士,则丙不是博士;由⑤国防科技大学的是研究生,可知丙不是研究生,故丙为学士.综上可知,丙来自军事科学院,学位是学士.故选:C.【点睛】本题考查了合情推理的简单应用,由条件的相互牵制判断符合要求的情况,属于基础题.12、B【解析】
由,进而分别求出展开式中的系数及展开式中的系数,令二者之和等于,可求出实数的值.【详解】由,则展开式中的系数为,展开式中的系数为,二者的系数之和为,得.故选:B.【点睛】本题考查二项式定理的应用,考查学生的计算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据等比数列通项公式,首先求得,然后求得.【详解】设的公比为,由,得,故.故答案为:【点睛】本小题主要考查等比数列通项公式的基本量计算,属于基础题.14、【解析】
画出可行域,通过平移基准直线到可行域边界位置,由此求得目标函数的最小值.【详解】画出可行域如下图所示,由图可知:可行域是由三点,,构成的三角形及其内部,当直线过点时,取得最小值.故答案为:【点睛】本小题主要考查利用线性规划求目标函数的最值,考查数形结合的数学思想方法,属于基础题.15、13【解析】
根据点在直线上可求得,由等比中项的定义可构造方程求得结果.【详解】在上,,成等比数列,,即,解得:.故答案为:.【点睛】本题考查根据三项成等比数列求解参数值的问题,涉及到等比中项的应用,属于基础题.16、【解析】
根据已知求出,利用向量的运算律,求出即可.【详解】由可得,则,所以.故答案为:【点睛】本题考查向量的模、向量的数量积运算,考查计算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】
(1)在直线的参数方程中消去参数可得出直线的普通方程,在曲线的极坐标方程两边同时乘以得,进而可化简得出曲线的直角坐标方程;(2)根据变换得出的普通方程为,可设点的坐标为,利用点到直线的距离公式结合正弦函数的有界性可得出结果.【详解】(1)由(为参数),得,化简得,故直线的普通方程为.由,得,又,,.所以的直角坐标方程为;(2)由(1)得曲线的直角坐标方程为,向下平移个单位得到,纵坐标不变,横坐标变为原来的倍得到曲线的方程为,所以曲线的参数方程为(为参数).故点到直线的距离为,当时,最小为.【点睛】本题考查曲线的参数方程、极坐标方程与普通方程的相互转化,同时也考查了利用椭圆的参数方程解决点到直线的距离最值的求解,考查计算能力,属于中等题.18、(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)见解析【解析】
运用数学归纳法证明即可得到结果化简,运用累加法得出结果运用放缩法和累加法进行求证【详解】(Ⅰ)数学归纳法证明时,①当时,成立;②当时,假设成立,则时所以时,成立综上①②可知,时,(Ⅱ)由得所以;;故,又所以(Ⅲ)由累加法得:所以故【点睛】本题考查了数列的综合,运用数学归纳法证明不等式的成立,结合已知条件进行化简求出化简后的结果,利用放缩法求出不等式,然后两边同时取对数再进行证明,本题较为困难。19、(1)(2)【解析】
(1)按绝对值的定义分类讨论去绝对值符号后解不等式;(2)不等式转化为,求出在上的最小值即可,利用绝对值定义分类讨论去绝对值符号后可求得函数最小值.【详解】解:(1)或或解得或或无解综上不等式的解集为.(2)时,,即所以只需在时恒成立即可令,由解析式得在上是增函数,∴当时,即【点睛】本题考查解绝对值不等式,考查不等式恒成立问题,解决绝对值不等式的问题,分类讨论是常用方法.掌握分类讨论思想是解题关键.20、(1),;(2)详见解析.【解析】
(1)当时,,当时,,当时,也满足,∴,∵等比数列,∴,∴,又∵,∴或(舍去),∴;(2)由(1)可得:,∴,显然数列是递增数列,∴,即.)21、(Ⅰ)填表见解析,有95%以上的把握认为“性别”与“问卷结果”有关;(Ⅱ)分布列见解析,【解析】
(Ⅰ)根据茎叶图填写列联表,计算得到答案.(Ⅱ),计算,,,得到分布列,再计算数学期望得到答案.【详解】(Ⅰ)根据茎叶图可得:男女总计合格101626不合格10414总计202040,故有95%以上的把握认为“性别”与“问卷结果””有关.(Ⅱ)从茎叶图可知,成绩在60分以下(不含60分)的男女学生人数分别是4人和2人,从中任意选2人,基本事件总数为,,,,012.【点睛】本题考查了独立性检验,分布列,数学期望,意在考查学生的综合应用能力.22、(1)见解析;(2)【解析】
(1)根据面面垂直性质及线面垂直性质
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新形势下工艺品行业可持续发展战略制定与实施研究报告
- 2025-2030年中国生活性服务行业资本规划与股权融资战略制定与实施研究报告
- 自动扶梯施工方案
- 中学教学常规要求
- 测你在床上的真实风格究竟是啥
- 真空采血管使用情况调研
- 无尘室系统行业行业发展趋势及投资战略研究分析报告
- 2024-2027年中国超休闲游戏行业发展监测及投资战略研究报告
- 监控器安装知识培训课件
- 车辆汽修知识培训课件
- (八省联考)河南省2025年高考综合改革适应性演练 思想政治试卷(含答案)
- 综合测试 散文阅读(多文本)(解析版)-2025年高考语文一轮复习(新高考)
- 钣金设备操作培训
- 2024驾校经营权承包合同
- 福建省能化集团笔试题目
- 快递公司与驿站合作协议模板 3篇
- 水利工程招标文件样本
- 品质管控培训质量管理与质量控制课件
- 小数加减乘除计算题大全(300题大全)-
- 2023-2024学年小学语文四年级素养检测复习试题附答案
- 露天矿山全员安全教育培训
评论
0/150
提交评论