版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
-.z.中考数学专题复习相似图形【根底知识回忆】成比例线段:1、线段的比:如果选用同一长度的两条线段AB,CD的长度分别为m、n则这两条线段的比就是它们的比,即:=2、比例线段:四条线段a、b、c、d如果=则四条线段叫做同比例线段,简称3、比例的根本性质:=<=>4、平行线分线段成比例定理:将平行线截两条直线【提醒:表示两条线段的比时,必须使示用一样的,在用了一样的前提下,两条线段的比值与用的单位无关即比值没有单位。】二、相似三角形:1、定义:如果两个三角形的各角对应各边对应则这两个三角形相似2、性质:⑴相似三角形的对应角对应边⑵相似三角形对应点的比、对应角平分线的比、对应的比都等于⑶相似三角形周长的比等于面积的比等于判定:⑴根本定理:平行于三角形一边的直线和其它两边或两线相交,三角形与原三角形相似⑵两边对应且夹角的两三角形相似⑶两角的两三角形相似⑷三组对应边的比的两三角形相似【名师提醒:1、全等是相似比为的特殊相似2、根据相似三角形的性质的特质和判定,要证四条线段的比相等,一般要先证判定方法中最常用的是三组对应边成比例的两三角形相似多用在点三角形中】三、相似多边形:1、定义:各角对应各边对应的两个多边形叫做相似多边形2、性质:⑴相似多边形对应角对应边⑵相似多边形周长的比等于面积的比等于【名师提醒:相似多边形没有专门的判定方法,判定两多边形相似多用在矩形中,一般用定义进展判定】位似:1、定义:如果两个图形不仅是而且每组对应点所在直线都经过则这样的两个图形叫做位似图形,这个点叫做这时相似比又称为2、性质:位似图形上任意一点到位似中心的距离之比都等于【名师提醒:1、位似图形一定是图形,但反之不成立,利用位似变换可以将一个图形放大或2、在平面直角坐标系中,如果位似是以原点为位似中心,相似比位r,则位似图形对应点的坐标的比等于或】【典型例题解析】考点一:比例线段例1
如图,△ABC,AB=AC=1,∠A=36°,∠ABC的平分线BD交AC于点D,则AD的长是,cosA的值是.〔结果保存根号〕考点:黄金分割;相似三角形的判定与性质;锐角三角函数的定义.分析:可以证明△ABC∽△BDC,设AD=*,根据相似三角形的对应边的比相等,即可列出方程,求得*的值;
过点D作DE⊥AB于点E,则E为AB中点,由余弦定义可求出cosA的值.点评:△ABC、△BCD均为黄金三角形,利用相似关系可以求出线段之间的数量关系;在求cosA时,注意构造直角三角形,从而可以利用三角函数定义求解.对应训练2.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,假设AC=2,则AD的长是〔〕A.B.C.D.考点二:相似三角形的性质及其应用例2△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则ABC与△DEF的面积之比为.对应训练2.△ABC∽△A′B′C′,相似比为3:4,△ABC的周长为6,则△A′B′C′的周长为.考点三:相似三角形的判定方法及其应用例3如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=BC.图中相似三角形共有〔〕A.1对 B.2对 C.3对 D.4对考点:相似三角形的判定;正方形的性质.例4〔1〕如图〔1〕,正方形AEGH的顶点E、H在正方形ABCD的边上,直接写出HD:GC:EB的结果〔不必写计算过程〕;
〔2〕将图〔1〕中的正方形AEGH绕点A旋转一定角度,如图〔2〕,求HD:GC:EB;
考点:相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;等腰直角三角形;正方形的性质.对应训练3.如图,△ABC≌△ADE且∠ABC=∠ADE,∠ACB=∠AED,BC、DE交于点O.则以下四个结论中,①∠1=∠2;②BC=DE;③△ABD∽△ACE;④A、O、C、E四点在同一个圆上,一定成立的有〔〕A.1个 B.2个 C.3个 D.4个考点:相似三角形的判定;全等三角形的性质;圆周角定理.4.在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.
〔1〕如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;
〔2〕如图2,连接AA1,CC1.假设△ABA1的面积为4,求△CBC1的面积;
〔3〕如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.
考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.专题:几何综合题.分析:〔1〕由由旋转的性质可得:∠A1C1B=∠ACB=45°,BC=BC1,又由等腰三角形的性质,即可求得∠CC1A1的度数;〔2〕由△ABC≌△A1BC1,易证得△ABA1∽△CBC1,然后利用相似三角形的面积比等于相似比的平方,即可求得△CBC1的面积;
〔3〕由①当P在AC上运动至垂足点D,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小,②当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,即可求得线段EP1长度的最大值与最小值.解答:解:〔1〕由旋转的性质可得:∠A1C1B=∠ACB=45°,BC=BC1,
∴∠CC1B=∠C1CB=45°,..…〔2分〕
∴∠CC1A1=∠CC1B+∠A1C1B=45°+45°=90°.
〔2〕∵△ABC≌△A1BC1,
∴BA=BA1,BC=BC1,∠ABC=∠A1BC1,
∴,∠ABC+∠ABC1=∠A1BC1+∠ABC1,
∴∠ABA1=∠CBC1,
∴△ABA1∽△CBC1.
∴,
∵S△ABA1=4,
∴S△CBC1=;
〔3〕①如图1,过点B作BD⊥AC,D为垂足,
∵△ABC为锐角三角形,
∴点D在线段AC上,
在Rt△BCD中,BD=BC×sin45°=,
当P在AC上运动与AB垂直的时候,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小,最小值为:EP1=BP1-BE=BD-BE=-2;
②当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,最大值为:EP1=BC+BE=2+5=7.点评:此题考察了旋转的性质、相似三角形的判定与性质、全等三角形的判定与性质以及三角函数的应用.此题难度较大,注意数形结合思想的应用,注意旋转前后的对应关系.考点四:位似例5如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的*轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,AC=3,假设点A′的坐标为〔1,2〕,则正方形A′B′C′D′与正方形ABCD的相似比是〔〕A.B.C.D.考点:位似变换;坐标与图形性质.分析:延长A′B′交BC于点E,根据大正方形的对角线长求得其边长,然后求得小正方形的对应训练5.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,点A的坐标为〔1,0〕,则E点的坐标为〔〕A.〔,0〕B.〔C.D.考点:位似变换;坐标与图形性质.【聚焦中考】1.矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,假设四边形EFDC与矩形ABCD相似,则AD=〔〕A. B. C. D.2考点:相似多边形的性质;翻折变换〔折叠问题〕.2.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在*轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,则点B′的坐标是〔〕A.〔-2,3〕 B.〔2,-3〕 C.〔3,-2〕或〔-2,3〕 D.〔-2,3〕或〔2,-3〕考点:相似多边形的性质;坐标与图形性质.3.在菱形ABCD中,E是BC边上的点,连接AE交BD于点F,假设EC=2BE,则的值是〔〕A.B.C.D.考点:相似三角形的判定与性质;菱形的性质.4.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;
②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有〔〕A.1组 B.2组 C.3组 D.4组F考点:相似三角形的应用;解直角三角形的应用.5.如图,在平面直角坐标系中,△ABC的顶点坐标分别为〔4,0〕,〔8,2〕,〔6,4〕.△A1B1C1的两个顶点的坐标为〔1,3〕,〔2,5〕,假设△ABC与△A1B1C1位似,则△A1B1C1的第三个顶点的坐标为.考点:位似变换;坐标与图形性质.6.如图,在边长为1的小正方形组成的网格中,△ABC和△DEF的顶点都在格点上,P1,P2,P3,P4,P5是△DEF边上的5个格点,请按要求完成以下各题:
〔1〕试证明三角形△ABC为直角三角形;
〔2〕判断△ABC和△DEF是否相似,并说明理由;
〔3〕画一个三角形,使它的三个顶点为P1,P2,P3,P4,P5中的3个格点并且与△ABC相似〔要求:用尺规作图,保存痕迹,不写作法与证明〕.考点:作图—相似变换;勾股定理的逆定理;相似三角形的判定.【备考真题过关】一、选择题1.,则的值是〔〕A.B.C.D.2.如图,△ABC为等边三角形,点E在BA的延长线上,点D在BC边上,且ED=EC.假设△ABC的边长为4,AE=2,则BD的长为〔〕A.2B.3C.D.3.如图,在矩形ABCD中,AB=2,BC=3,点E、F、G、H分别在矩形ABCD的各边上,EF∥AC∥HG,EH∥BD∥FG,则四边形EFGH的周长是〔〕A.B.C.D.考点:平行线分线段成比例;勾股定理;矩形的性质.4.小用手机拍摄得到甲图,经放大后得到乙图,甲图中的线段AB在乙图中的对应线段是〔〕
A.FG B.FH C.EH D.EF考点:相似图形.5.如图,六边形ABCDEF∽六边形GHIJKL,相似比为2:1,则以下结论正确的选项是〔〕A.∠E=2∠KB.BC=2HIC.六边形ABCDEF的周长=六边形GHIJKL的周长D.S六边形ABCDEF=2S六边形GHIJKL6.以下4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是〔〕A. B. C. D.7.如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的选项是〔〕A.∠ABD=∠CB.∠ADB=∠ABCC.D.考点:相似三角形的判定.8.如图,在△ABC中,EF∥BC,,S四边形BCFE=8,则S△ABC=〔〕A.9 B.10 C.12 D.13考点:相似三角形的判定与性质.9.如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,点E、F分别为AB、AD的中点,则△AEF与多边形BCDFE的面积之比为〔〕A.B.C.D.考点:相似三角形的判定与性质;三角形的面积;三角形中位线定理.10.〔2012•〕图中两个四边形是位似图形,它们的位似中心是〔〕A.点M B.点N C.点O D.点P11.如图,在平面直角坐标系中,以原点O为位中心,将△ABO扩大到原来的2倍,得到△A′B′O.假设点A的坐标是〔1,2〕,则点A′的坐标是〔〕A.〔2,4〕 B.〔-1,-2〕 C.〔-2,-4〕 D.〔-2,-1〕考点:位似变换;坐标与图形性质.二、填空题14.正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,当BM=cm时,四边形AB的面积最大,最大面积为cm2.考点:相似三角形的判定与性质;二次函数的最值;正方形的性质.15.如图,O为矩形ABCD的中心,M为BC边上一点,N为DC边上一点,ON⊥OM,假设AB=6,AD=4,设OM=*,ON=y,则y与*的函数关系式为。考点:相似三角形的判定与性质;矩形的性质.16.如图,E是▱ABCD的边CD上一点,连接AE并延长交BC的延长线于点F,且AD=4,,则CF的长为.考点:相似三角形的判定与性质;平行四边形的性质.17.如图,在边长一样的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,则tan∠APD的值是.考点:相似三角形的判定与性质;勾股定理;锐角三角函数的定义.18.如图,利用标杆BE测量建筑物的高度,标杆BE高1.5m,测得AB=2m,BC=14cm,则楼高CD为m.19.如图,在一场羽毛球比赛中,站在场M处的运发动林丹把球从N点击到了对方的B点,网高OA=1.52米,OB=4米,OM=5米,则林丹起跳后击球点N离地面的距离NM=米.考点:相似三角形的应用.20.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.纸板的两条直角边DE=40cm
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 运输合作合同模板
- 棉花采购合同2024年度定制版(含质量、交货期限)
- 四下英语三单元教学课件教学课件教学
- 《醒脑开窍针法》课件
- 《鸡大肠杆菌病》课件
- 20恐龙课件教学课件
- 企业借款合同范本
- 机械设备租赁合同协议书
- 深圳市劳动合同经典版
- 《工地建设》课件
- 记叙文写作教学公开课一等奖市赛课获奖课件
- 2.PaleoScan详细操作流程
- 国土空间生态修复规划山水林田湖草
- 矿山开采与土地复垦
- 中国现当代文学知到章节答案智慧树2023年哈尔滨学院
- 毒力回归方程 EXCEL在毒力回归计算中的应用
- 语言学教程(英文版)胡壮麟版
- 猫病诊疗基础-猫的保定(猫病防治技术)
- 个体工商户合作协议书模板
- 中学生不良情绪产生的原因与调节方法的研究
- 仁爱版英语七年级单词总测试-
评论
0/150
提交评论