2016-2017北师大八年级下册数学第一章三角形的证明导学案1.4角平分线(第二课时)_第1页
2016-2017北师大八年级下册数学第一章三角形的证明导学案1.4角平分线(第二课时)_第2页
2016-2017北师大八年级下册数学第一章三角形的证明导学案1.4角平分线(第二课时)_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2016-2017北师大八年级下册数学第一章三角形的证明导学案1.4角平分线(第二课时)1.引言本文档是关于北师大八年级下册数学第一章三角形的证明导学案1.4角平分线(第二课时)的讲解。2.角平分线的定义角平分线是指将一个角平分成两个相等的角的直线。在三角形中,我们经常需要探究角平分线的性质和应用。3.角平分线的性质3.1角平分线的定义角平分线是指将一个角平分成两个相等的角的直线。3.2角平分线的重要性质3.2.1角平分线上的点到角的两边的距离相等对于任意一个角,角平分线上的点到角的两边的距离是相等的。3.2.2角平分线将有二等分角的两边所在直线的延长线分成相等的两部分对于一个角平分线,它将有二等分角的两边所在直线的延长线分成两部分,且这两部分的长度相等。3.2.3角平分线上的点到角的两边的长度比相等对于一个角平分线,角平分线上的点到角的两边的长度比是相等的。3.3角平分线的应用3.3.1证明角平分线的存在性在数学证明过程中,我们常常需要使用角平分线的性质来证明一些结论的存在性。3.3.2解题中的角平分线应用在解题过程中,我们可以利用角平分线的性质来找到一些重要的信息,进而解决问题。4.角平分线的证明方法4.1证明角平分线的存在性4.1.1通过等边三角形证明当我们需要证明一个角平分线的存在性时,可以构造等边三角形,并利用角平分线将等边三角形进行分割,从而证明角平分线的存在性。4.1.2利用三角形的既定角平分线证明根据既定角平分线的性质,可以利用角平分线将三角形分割成已知的等角三角形,从而证明角平分线的存在性。4.2证明角平分线的性质4.2.1利用距离公式证明角平分线上的点到角的两边的距离相等通过使用距离公式,可以得到角平分线上的点到角的两边的距离相等的证明过程。4.2.2通过使用几何定理证明角平分线将有二等分角的两边所在直线的延长线分成相等的两部分利用三角形的性质和几何定理,可以证明角平分线将有二等分角的两边所在直线的延长线分成两部分的证明过程。4.2.3通过使用长度比公式证明角平分线上的点到角的两边的长度比相等通过使用长度比公式,可以得到角平分线上的点到角的两边的长度比相等的证明过程。5.总结角平分线是将一个角平分成两个相等的角的直线。它具有多个重要的性质,包括角平分线上的点到角的两边的距离相等、角平分线将有二等分角的两边所在直线的延长线分成相等的两部分以及角平分线上的点到角的两边的长度比相等。我们可以利用角平分线的性质来证明一些结论的存在性,以及在解题过程中找到重要的信息。证明角平分线的存在性可以通过等边三角形和既定角平分线的方法进行。证明角平分线的性质可以通过距离公式、几何定理和长度比公式进行证明。以上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论