2023学年完整公开课版公式法_第1页
2023学年完整公开课版公式法_第2页
2023学年完整公开课版公式法_第3页
2023学年完整公开课版公式法_第4页
2023学年完整公开课版公式法_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四章因式分解3公式法(一)填空:(1)(x+5)(x-5)=

;(2)(3x+y)(3x-y)=

;(3)(3m+2n)(3m–2n)=

.它们的结果有什么共同特征?复习回顾尝试将它们的结果分别写成两个因式的乘积:将多项式进行因式分解探究新知谈谈你的感受。整式乘法公式的逆向变形得到分解因式的方法。这种分解因式的方法称为运用公式法。(1)公式左边:(是一个将要被分解因式的多项式)★被分解的多项式含有两项,且这两项异号,并且能写成()2-()2的形式。(2)公式右边:(是分解因式的结果)★分解的结果是两个底数的和乘以两个底数的差的形式。))((22bababa-+=-▲▲▲说一说找特征下列多项式能转化成()2-()2的形式吗?如果能,请将其转化成()2-()2的形式。(1)m2

-81(2)1-16b2(3)4m2+9(4)a2x2

-25y2(5)-x2

-25y2试一试写一写例1.分解因式:先确定a和b范例学习解:原式解:原式1.判断正误:a2和b2的符号相反落实基础()()()()2.分解因式:分解因式需“彻底”!把括号看作一个整体能力提升例2.分解因式:解:原式))((22bababa-+=-结论:公式中的a、b无论表示数、单项式、还是多项式,只要被分解的多项式能转化成平方差的形式,就能用平方差公式因式分解。解:原式方法:先考虑能否用提取公因式法,再考虑能否用平方差公式分解因式。解:原式结论:分解因式的一般步骤:一提二套多项式的因式分解要分解到不能再分解为止。巩固练习1.把下列各式分解因式:例3.如图,在一块长为a的正方形纸片的四角,各剪去一个边长为b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论