2024届河北省大城县八上数学期末联考试题含解析_第1页
2024届河北省大城县八上数学期末联考试题含解析_第2页
2024届河北省大城县八上数学期末联考试题含解析_第3页
2024届河北省大城县八上数学期末联考试题含解析_第4页
2024届河北省大城县八上数学期末联考试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河北省大城县八上数学期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在平面直角坐标系中,等腰△ABC的顶点A、B的坐标分别为(0,0)、(2,2),若顶点C落在坐标轴上,则符合条件的点C有()个.A.5 B.6 C.7 D.82.估计的值约为()A.2.73 B.1.73 C.﹣1.73 D.﹣2.733.如图,在平面直角坐标系中,点,,,和,,,分别在直线和轴上,,,,是以,,,为顶点的等腰直角三角形.如果点,那么点的纵坐标是()A. B. C. D.4.某班级的一次数学考试成绩统计图如图,则下列说法错误的是()A.得分在70~80分的人数最多 B.该班的总人数为40C.人数最少的得分段的频数为2 D.得分及格(≥60分)的有12人5.要使分式无意义,则的取值范围是()A. B. C. D.6.下列各式从左到右的变形中,是因式分解的是()A.3x+2x﹣1=5x﹣1 B.(3a+2b)(3a﹣2b)=9a2﹣4b2C.x2+x=x2(1+) D.2x2﹣8y2=2(x+2y)(x﹣2y)7.如图,△ABC≌△AEF且点F在BC上,若AB=AE,∠B=∠E,则下列结论错误的是()A.AC=AF B.∠AFE=∠BFE C.EF=BC D.∠EAB=∠FAC8.如果,那么代数式的值是().A.2 B. C. D.9.如图,在中,,分别以顶点,为圆心,大于长为半径作弧,两弧交于点,,作直线交于点.若,,则长是()A.7 B.8 C.12 D.1310.如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A.15 B.18 C.21 D.2411.下列边长相等的正多边形能完成镶嵌的是()A.2个正八边形和1个正三角形 B.3个正方形和2个正三角形C.1个正五边形和1个正十边形 D.2个正六边形和2个正三角形12.要使分式的值为0,你认为x可取得数是A.9 B.±3 C.﹣3 D.3二、填空题(每题4分,共24分)13.如图,O为坐标原点,△OAB是等腰直角三角形,∠OAB=90°,点B的坐标为,将该三角形沿轴向右平移得到,此时点的坐标为,则线段OA在平移过程中扫过部分的图形面积为______.14.若关于x的分式方程的解是正数,则实数m的取值范围是_________15.如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,BD的长为_____.16.如图,在平面直角坐标系中,点在直线上,过点作轴于点,作等腰直角三角形(与原点重合),再以为腰作等腰直角三角形,以为腰作等腰直角三角形;按照这样的规律进行下去,那么的坐标为______.的坐标为______.17.因式分解:x3﹣2x2+x=.18.在某中学举行的演讲比赛中,八年级5名参赛选手的成绩如下表所示,你根据表中提供的数据,计算出这5名选手成绩的方差_______.选手1号2号3号4号5号平均成绩得分9095■898891三、解答题(共78分)19.(8分)解答下面两题:(1)解方程:(2)化简:20.(8分)数学课上,李老师出示了如下的题目:如图1,在等边中,点在上,点在的延长线上,且,试确定线段与的大小关系,并说明理由,(1)小敏与同桌小聪探究解答的思路如下:①特殊情况,探索结论,当点为的中点时,如图2,确定线段与的大小关系,请你直接写出结论:______.(填>,<或=)②特例启发,解答题目,解:题目中,与的大小关系是:______.(填>,<或=)理由如下:如图3,过点作,交于点,(请你补充完成解答过程)(2)拓展结论,设计新题,同学小敏解答后,提出了新的问题:在等边中,点在直线上,点在直线上,且,已知的边长为,求的长?(请直接写出结果)21.(8分)计算:(﹣4)×(﹣)+2﹣1﹣(π﹣1)0+.22.(10分)老师在黑板上写出三个算式:,,,王华接着又写了两个具有同样规律的算式:,,…(1)请你再写出一个(不同于上面算式)具有上述规律的算式;(2)用文字表述上述算式的规律;(3)证明这个规律的正确性.23.(10分)平面直角坐标系中,三个顶点的坐标为.(1)直接写出关于轴对称的点的坐标:;;;(2)若各顶点的横坐标不变,纵坐标都乘以,请直接写出对应点,,的坐标,并在坐标系中画出.24.(10分)已知:如图,△ABC中,∠ACB=45°,AD⊥BC于D,CF交AD于点F,连接BF并延长交AC于点E,∠BAD=∠FCD.求证:(1)△ABD≌△CFD;(2)BE⊥AC.25.(12分)已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,E、F分别是AB、AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E、F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?画出图形,写出结论不证明.26.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC.(1)证明:BC=DE;(2)若AC=13,CE经过点D,求四边形ABCD的面积.

参考答案一、选择题(每题4分,共48分)1、D【分析】要使△ABC是等腰三角形,可分三种情况(①若AC=AB,②若BC=BA,③若CA=CB)讨论,通过画图就可解决问题.【题目详解】①若AC=AB,则以点A为圆心,AB为半径画圆,与坐标轴有4个交点;②若BC=BA,则以点B为圆心,BA为半径画圆,与坐标轴有2个交点(A点除外);③若CA=CB,则点C在AB的垂直平分线上.∵A(0,0),B(2,2),∴AB的垂直平分线与坐标轴有2个交点.综上所述:符合条件的点C的个数有8个.故选D.【题目点拨】本题考查了等腰三角形的判定、垂直平分线的性质的逆定理等知识,还考查了动手操作的能力,运用分类讨论的思想是解决本题的关键.2、B【分析】先求出的范围,即可求出答案.【题目详解】解:∵1<<2,∴的值约为1.73,故选:B.【题目点拨】本题考查近似数的确定,熟练掌握四舍五入求近似数的方法是解题的关键.3、A【分析】设点A2,A3,A4…,A2019坐标,结合函数解析式,寻找纵坐标规律,进而解题.【题目详解】解:在直线,,,设,,,,,,,,,则有,,,,又△,△,△,,都是等腰直角三角形,,,,.将点坐标依次代入直线解析式得到:,,,,,又,,,,,,故选:A.【题目点拨】此题主要考查了一次函数点坐标特点,等腰直角三角形斜边上高等于斜边长一半,解题的关键是找出规律.4、D【解题分析】试题分析:A、得分在70~80分之间的人数最多,有14人,此选项正确;B、该班的总人数为4+12+14+8+2=40人,此选项正确;C、得分在90~100分之间的人数最少,有2人,频数为2,此选项正确;D、及格(≥60分)人数是12+14+8+2=36人,此选项错误.故选D.点睛:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.5、A【分析】根据分式无意义,分母等于0列方程求解即可.【题目详解】∵分式无意义,∴x+1=0,解得x=-1.故选A.【题目点拨】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(1)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.6、D【解题分析】A.没把一个多项式转化成几个整式积的形式,故A错误;B.是整式的乘法,故B错误;C.没把一个多项式转化成几个整式积的形式,故C错误;D.把一个多项式转化成几个整式积的形式,故D正确;故选D.7、B【分析】全等三角形的对应边相等,对应角相等,△ABC≌△AEF,可推出AB=AE,∠B=∠E,AC=AF,EF=BC.【题目详解】∵△ABC≌△AEF∴AB=AE,∠B=∠E,AC=AF,EF=BC故A,C选项正确.∵△ABC≌△AEF∴∠EAF=∠BAC∴∠EAB=∠FAC故D答案也正确.∠AFE和∠BFE找不到对应关系,故不一定相等.故选:B.【题目点拨】本题考查全等三角形的性质,全等三角形对应边相等,对应角相等.8、A【解题分析】(a-)·=·=·=a+b=2.故选A.9、B【分析】根据垂直平分线的判定和性质,得到AD=BD,即可得到BC的长度.【题目详解】解:根据题意可知,直线MN是AB的垂直平分线,∴BD=AD=5,∴BC=BD+CD=5+3=8;故选:B.【题目点拨】本题考查了线段垂直平分线的判定和性质,解题的关键是熟练掌握垂直平分线的性质定理进行解题.10、A【分析】此题涉及的知识点是平行四边形的性质.根据平行四边形的对边相等和对角线互相平分可得,OB=OD,又因为E点是CD的中点,可得OE是△BCD的中位线,可得OE=BC,所以易求△DOE的周长.【题目详解】解:∵▱ABCD的周长为32,∴2(BC+CD)=32,则BC+CD=1.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=2.又∵点E是CD的中点,DE=CD,∴OE是△BCD的中位线,∴OE=BC,∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=2+9=3,即△DOE的周长为3.故选A【题目点拨】此题重点考察学生对于平行四边形的性质的理解,三角形的中位线,平行四边形的对角对边性质是解题的关键.11、D【分析】只需要明确几个几何图形在一点进行平铺就是几个图形与这一点相邻的所有内角之和等于360°即可。【题目详解】A.2个正八边形和1个正三角形:135°+135°+60°=330°,故不符合;B.3个正方形和2个正三角形:90°+90°+90°+60°+60°=390°,故不符合;C.1个正五边形和1个正十边形:108°+144°=252°,故不符合;D.2个正六边形和2个正三角形:120°+120°+60°+60°=360°,符合;故选D.【题目点拨】本题考查多边形的内角,熟练掌握多边形的内角的度数是解题关键.12、D【解题分析】试题分析:根据分式分子为0分母不为0的条件,要使分式的值为0,则必须.故选D.二、填空题(每题4分,共24分)13、1【解题分析】分析:利用平移的性质得出AA′的长,根据等腰直角三角形的性质得到AA′对应的高,再结合平行四边形面积公式求出即可.详解:∵点B的坐标为(0,2),将该三角形沿x轴向右平移得到Rt△O′A′B′,此时点B′的坐标为(2,2),∴AA′=BB′=2,∵△OAB是等腰直角三角形,∴A(,),∴AA′对应的高,∴线段OA在平移过程中扫过部分的图形面积为2×=1.故答案为1.点睛:此题主要考查了平移变换、等腰直角三角形的性质以及平行四边面积求法,利用平移规律得出对应点坐标是解题关键.14、且m-4【分析】先解方程求出x=m+6,根据该方程的解是正数,且x-20列得,计算即可.【题目详解】2x+m=3(x-2)x=m+6,∵该方程的解是正数,且x-20,∴,解得且x-4,故答案为:且m-4.【题目点拨】此题考查分式的解的情况求字母的取值范围,解题中注意不要忽略分式的分母不等于零的情况.15、1.【分析】根据勾股定理求出AC,根据三角形的外角的性质得到∠B=∠CAB,根据等腰三角形的性质求出BC,计算即可.【题目详解】解:∵∠D=90°,CD=6,AD=8,∴AC===10,∵∠ACD=2∠B,∠ACD=∠B+∠CAB,∴∠B=∠CAB,∴BC=AC=10,∴BD=BC+CD=1,故答案:1.【题目点拨】本题考查勾股定理、三角形的外角的性质,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.16、【分析】根据直线的解析式及等腰直角三角形的性质分析前几个点的坐标规律,找到规律则可得出答案.【题目详解】∵点在x轴上,且∵∴的坐标为故答案为:;.【题目点拨】本题主要考查等腰直角三角形的性质,找到点的坐标规律是解题的关键.17、【解题分析】试题分析:先提公因式x,再用完全平方公式分解即可,所以.考点:因式分解.18、6.8;【分析】首先根据五名选手的平均成绩求得3号选手的成绩,然后利用方差公式直接计算即可.【题目详解】解:观察表格知道5名选手的平均成绩为91分,∴3号选手的成绩为:91×5-90-95-89-88=93(分),∴方差为:[(90-91)2+(95-91)2+(93-91)2+(89-91)2+(88-91)2]=6.8,故答案为:6.8.【题目点拨】本题考查了求方差,以及知道平均数求某个数据,解题的关键是掌握求方差的公式,以及正确求出3号选手的成绩.三、解答题(共78分)19、(1);(2)【分析】(1)去分母把分式方程化为整式方程求解即可,注意要验根;(2)根据分式的混合运算法则计算即可.【题目详解】去分母,得:移项,合并同类项,得:∴.检验:当时,,∴是原方程的解,∴原方程的解是.(2)原式.【题目点拨】本题考查了解分式方程和分式的混合运算.掌握分式的混合运算法则是解答本题的关键.20、(1)①AE=DB;②=;理由见解析;(2)2或1.【分析】(1)①根据等边三角形性质和等腰三角形的性质求出=求出DB=BE,进而得出AE=DB即可;②根据题意结合平行线性质利用全等三角形的判定证得△BDE≌△FEC,求出AE=EF进而得到AE=DB即可;(2)根据题意分两种情况讨论,一种是点在线段上另一种是点在线段的反向延长线上进行分析即可.【题目详解】解:(1)①∵为等边三角形,点为的中点,∴,,∵,∴,得出,即有,∴,∴AE=DB.②AE=DB,理由如下:作EF//BC,交AB于E,AC于F,∵EF//BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACF=60°,∠1=∠2,∴∠1=∠5=120°,∵EC=ED,∴∠2=∠3,∴∠1=∠3,在△BDE和△FEC中,,∴△BDE≌△FEC,∴DB=EF,∵∠A=∠AEF=∠AFE=60°,∴△AEF为等边三角形,∴AE=EF,∴AE=DB.(2)第一种情况:假设点在线段上,并作EF//BC,交AB于E,AC于F,如图所示:根据②可知AE=DB,∵在等边中,的边长为,∴AE=DB=1,∴;第二种情况:假设点在线段的反向延长线上,如图所示:根据②的结论可知AE=DB,∵在等边中,的边长为,∴;综上所述CD的长为2或1.【题目点拨】本题综合考查等边三角形的性质和判定和等腰三角形的性质以及全等三角形的性质和判定等知识点的应用,解题的关键是构造全等的三角形进行分析.21、【解题分析】分析:按照实数的运算顺序进行运算即可.详解:原式点睛:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.22、(1)152-92=8×18,132-92=8×11;(2)任意两个奇数的平方差是8的倍数;(3)证明见解析.【分析】(1)根据算式的规律可见:左边是两个奇数的平方差,右边是8的倍数;可写出相同规律的算式;

(2)任意两个奇数的平方差是8的倍数;

(3)可设任意两个奇数为:2n+1,2m+1(其中n、m为整数)计算即可.【题目详解】解:(1)通过对老师和王华算式的观察,可以知道,左边是奇数的平方差,右边是8的倍数,

∴152-92=8×18,132-92=8×11,…;

(2)上述规律可用文字描述为:任意两个奇数的平方差等于8的倍数;

(3)证明:设m、n为整数,则任意两个奇数可表示为2m+1和2n+1,

∴(2m+1)2-(2n+1)2=(2m-2n)(2m+2n+2)=4(m-n)(m+n+1),

又∵①当m、n同奇数或同偶数时;m-n一定是偶数,设m-n=2a;

②m、n一奇数一偶数;m+n+1一定是偶数,设m+n+1=2a

∴(2m+1)2-(2n+1)2=8a(m+n+1),

而a(m+n+1)是整数,

∴任意两个奇数的平方差等于8的倍数成立.【题目点拨】本题考查了一个数学规律,即任意两个奇数的平方差等于8的倍数.通过本题的学习可见数字世界的奇妙变换,很有意义.23、(1)(2);图见解析.【分析】(1)根据点坐标关于y轴对称的规律即可得;(2)根据“横坐标不变,纵坐标都乘以”可得点坐标,再在平面直角坐标系中描出三点,然后顺次连接即可得.【题目详解】(1)在平面直角坐标系中,点坐标关于y轴对称的规律为:横坐标变为相反数,纵坐标不变故答案为:;;;(2)横坐标不变,纵坐标都乘以在平面直角坐标系中,先描出三点,再顺次连接即可得,结果如图所示:【题目点拨】本题考查了点坐标关于y轴对称的规律、在平面直角坐标系中画三角形,熟练掌握平面直角坐标系中,点的坐标变换规律是解题关键.24、(1)证明见解析;(2)证明见解析.【解题分析】试题分析:(1)由垂直的性质推出∠ADC=∠FDB=90°,再由∠ACB=45°,推出∠ACB=∠DAC=45°,即可求得AD=CD,根据全等三角形的判定定理“ASA”,即可推出结论;(2)由(1)的结论推出BD=DF,根据AD⊥BC,即可推出∠DBF=∠DFB=45°,再由∠ACB=45°,通过三角形内角和定理即可推出∠BEC=90°,即BE⊥AC.试题解析:(1)∵AD⊥BC,∴∠ADC=∠ADB=90°,又∵∠ACB=45°,∴∠DAC=45°,∴∠ACB=∠DAC,∴AD=CD,在△ABD和△CFD中,∠BAD=∠FCD,AD=CD∠ADB=∠FDC,∴△ABD≌△CFD;(2)∵△ABD≌△CFD,∴BD=FD,∴∠1=∠2,又∵∠FDB=90°,∴∠1=∠2=45°,又∵∠ACD=45°,∴△BEC中,∠BEC=90°,∴BE⊥AC.考点:1.等腰三角形的判定与性质;2.全等三角形的判定与性质;3.等腰直角三角形.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论