广州市白云区2024届数学八上期末检测模拟试题含解析_第1页
广州市白云区2024届数学八上期末检测模拟试题含解析_第2页
广州市白云区2024届数学八上期末检测模拟试题含解析_第3页
广州市白云区2024届数学八上期末检测模拟试题含解析_第4页
广州市白云区2024届数学八上期末检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广州市白云区2024届数学八上期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.我们知道,平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为()A.1 B.2 C.4 D.无数2.两个三角形如果具有下列条件:①三条边对应相等;②三个角对应相等;③两条边及它们的夹角对应相等;④两条边和其中一边的对角相等;⑤两个角和一条边对应相等,那么一定能够得到两个三角形全等的是()A.①②③④B.①③④⑤C.①③⑤D.①②③④⑤3.如果,那么的值为()A. B. C.3 D.-34.能说明命题“”是假命题的一个反例是()A.a=-2 B.a=0 C.a=1 D.a=25.等于()A.2 B.-2 C.1 D.06.从2019年8月1日开始,温州市实行垃圾分类,以下是几种垃圾分类的图标,其中哪个图标是轴对称图形()A. B. C. D.7.下列二次根式中,是最简二次根式的是()A. B. C. D.8.若,则的值为()A.5 B.0 C.3或-7 D.49.下列运算中正确的是()A. B. C. D.10.下列说法中正确的个数是()①当a=﹣3时,分式的值是0②若x2﹣2kx+9是完全平方式,则k=3③工程建筑中经常采用三角形的结构,这是利用三角形具有稳定性的性质④在三角形内部到三边距离相等的点是三个内角平分线的交点⑤当x≠2时(x﹣2)0=1⑥点(﹣2,3)关于y轴对称的点的坐标是(﹣2,﹣3)A.1个 B.2个 C.3个 D.4个11.若m=,则m介于哪两个整数之间()A.1<m<2 B.2<m<3 C.3<m<4 D.4<m<512.下列各式中不能用平方差公式计算的是()A. B.C. D.二、填空题(每题4分,共24分)13.已知2x+3y﹣1=0,则9x•27y的值为______.14.如图,在中,,是的中点,,垂足为,,则的度数是______.15.如果实数,满足方程组,那么代数式的值为________.16.《九章算术》勾股卷有一题目:今有垣高一丈.依木于垣,上于垣齐.引木却行四尺,其木至地,问木长几何?意即:一道墙高一丈,一根木棒靠于墙上,木棒上端与墙头齐平,若木棒下端向后退,则木棒上端会随着往下滑,当木棒下端向后退了四尺时,木棒上端恰好落到地上,则木棒长______尺(1丈=10尺).17.如图,在平面直角坐标系中,△ABC是等腰直角三角形,∠ABC=90°,AB平行x轴,点C在x轴上,若点A,B分别在正比例函数y=6x和y=kx的图象上,则k=__________.18.比较大小:.三、解答题(共78分)19.(8分)我们学过的分解因式的方法有提取公因式法、公式法及十字相乘法,但有很多的多项式只用上述方法就无法分解,如,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:;这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式:(2)三边,,满足,判断的形状.20.(8分)如图,在平面直角坐标系中,已知四边形的顶点,.(1)画出四边形关于轴的对称图形;(2)请直接写出点关于轴的对称点的坐标:.21.(8分)如图,在平行四边形ABCD中,AD=30,CD=10,F是BC的中点,P以每秒1个单位长度的速度从A向D运动,到D点后停止运动;Q沿着路径以每秒3个单位长度的速度运动,到D点后停止运动.已知动点P,Q同时出发,当其中一点停止后,另一点也停止运动.设运动时间为t秒,问:(1)经过几秒,以A,Q,F,P为顶点的四边形是平行四边形(2)经过几秒,以A,Q,F,P为顶点的四边形的面积是平行四边形ABCD面积的一半?22.(10分)如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,连接DA并延长,交y轴于点E.(1)求证:△OBC≌△ABD;(2)若以A,E,C为顶点的三角形是等腰三角形,求点C的坐标.23.(10分)在每个小正方形的边长为1的网格中,建立如图所示的平面直角坐标系.(1)在网格中画出△,使它与△关于轴对称;(2)点的对称点的坐标为;(3)求△的面积.24.(10分)如图,在平面直角坐标中,已知A(﹣1,5),B(﹣3,0),C(﹣4,3)(1)在图中作出△ABC关于y轴对称的图形△A′B′C′;(2)如果线段AB的中点是P(﹣2,m),线段A'B'的中点是(n﹣1,2.5).求m+n的值.(3)求△A'B'C的面积.25.(12分)如图,在平面直角坐标系中,正方形网格的每个小方格都是边长为1的正方形,的顶点都在格点上.(1)直接写出点的坐标;(2)试判断是不是直角三角形,并说明理由.26.综合与实践:问题情境:如图1,AB∥CD,∠PAB=25°,∠PCD=37°,求∠APC的度数,小明的思路是:过点P作PE∥AB,通过平行线性质来求∠APC问题解决:(1)按小明的思路,易求得∠APC的度数为°;问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β.(2)当点P在B,D两点之间运动时,问∠APC与α,β之间有何数量关系?请说明理由;拓展延伸:(3)在(2)的条件下,如果点P在B,D两点外侧运动时(点P与点O,B,D三点不重合)请你直接写出当点P在线段OB上时,∠APC与α,β之间的数量关系,点P在射线DM上时,∠APC与α,β之间的数量关系.

参考答案一、选择题(每题4分,共48分)1、B【分析】直接利用轴对称图形的性质画出对称轴即可.【题目详解】解:如图所示:平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为2条.故选:.【题目点拨】此题主要考查了轴对称图形的性质,正确掌握轴对称图形的性质是解题关键.2、C【解题分析】根据三角形全等的判定定理SSS、SAS、ASA、AAS分别进行分析即可.【题目详解】①三条边对应相等,可利用SSS定理判定两个三角形全等;②三个角对应相等,不能判定两个三角形全等;③两条边及它们的夹角对应相等,可以利用SAS定理判定两个三角形全等;④两条边和其中一边的对角相等,不能判定两个三角形全等;⑤两个角和一条边对应相等利用AAS定理判定两个三角形全等.故选:C.【题目点拨】本题考查的是全等三角形的判定,熟练掌握判定定理是解题的关键.3、A【分析】根据比的性质将原式进行变形求解即可.【题目详解】∵∴解得,故选:A.【题目点拨】本题考查了比例的性质,掌握“内项之积等于外项之积”是解此题的关键.4、A【分析】根据题意:选取的a的值不满足,据此逐项验证即得答案.【题目详解】解:A、当a=﹣2时,,能说明命题“”是假命题,故本选项符合题意;B、当a=0时,,不能说明命题“”是假命题,故本选项不符合题意;C、当a=1时,,不能说明命题“”是假命题,故本选项不符合题意;D、当a=2时,,不能说明命题“”是假命题,故本选项不符合题意;故选:A.【题目点拨】本题考查了算术平方根的性质和举反例说明一个命题是假命题,正确理解题意、会进行验证是关键.5、C【解题分析】根据任何非0数的0次幂都等于1即可得出结论.【题目详解】解:故选C.【题目点拨】此题考查的是零指数幂的性质,掌握任何非0数的0次幂都等于1是解决此题的关键.6、B【解题分析】根据轴对称图形的概念对各选项分析判断即可得解.【题目详解】解:A、不是轴对称图形,故本选项错误;B、不轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【题目点拨】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7、B【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,结合选项求解即可.【题目详解】解:A.=,故不是最简二次根式;B.,是最简二次根式;C.=,故不是最简二次根式;D.,故不是最简二次根式故选B.【题目点拨】本题考查了最简二次根式的知识,解答本题的关键在于掌握最简二次根式的概念,对各选项进行判断.8、C【分析】根据完全平方公式的变形即可求解.【题目详解】∵∴=±5,∴的值为3或-7故选C.【题目点拨】此题主要考查完全平方公式,解题的关键是熟知完全平方公式的变形应用.9、D【分析】直接利用合并同类项法则,同底数幂的乘法运算法则和积的乘方运算法则分别计算得出答案.【题目详解】A、,故此选项错误;B、a5+a5=2a5,故此选项错误;C、(−3a3)2=9a6,故此选项错误;D、(a3)2a=a7,故此选项正确;故选:D.【题目点拨】此题考查合并同类项,同底数幂的乘法,幂的乘方与积的乘方,解题关键在于掌握运算法则.10、C【解题分析】根据分式有意义的条件、完全平方公式、三角形的稳定性、内心的性质、非零数的零指数幂及关于坐标轴对称的点的坐标特点分别判断可得.【题目详解】解:①当a=﹣3时,分式无意义,此说法错误;②若x2﹣2kx+9是完全平方式,则k=±3,此说法错误;③工程建筑中经常采用三角形的结构,这是利用三角形具有稳定性的性质,此说法正确;④在三角形内部到三边距离相等的点是三个内角平分线的交点,此说法正确;⑤当x≠2时(x﹣2)0=1,此说法正确;⑥点(﹣2,3)关于y轴对称的点的坐标是(2,3),此说法错误;故选:C.【题目点拨】考查分式的值为零的条件,解题的关键是掌握分式有意义的条件、完全平方公式、三角形的稳定性、内心的性质、非零数的零指数幂及关于坐标轴对称的点的坐标特点.11、C【分析】由可得答案.【题目详解】解:∵,∴3<<4,∴3<m<4,故选:C.【题目点拨】本题考查无理数的估算,用先平方再比较的一般方法比较简单.12、A【分析】根据公式(a+b)(a-b)=a2-b2的左边的形式,判断能否使用.【题目详解】解:A、由于两个括号中含x、y项的系数不相等,故不能使用平方差公式,故此选项正确;

B、两个括号中,含y项的符号相同,1的符号相反,故能使用平方差公式,故此选项错误;

C、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,故此选项错误;

D、两个括号中,y相同,含2x的项的符号相反,故能使用平方差公式,故此选项错误;

故选A.【题目点拨】本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.二、填空题(每题4分,共24分)13、1【分析】直接利用幂的乘方运算法则将原式变形,进而利用同底数幂的乘法运算法则求出答案.【题目详解】解:∵2x+1y﹣1=0,∴2x+1y=1.

∴9x•27y=12x×11y=12x+1y=11=1.

故答案为:1.【题目点拨】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确将原式变形是解题关键.14、65【分析】首先根据三角形的三线合一的性质得到AD平分∠BAC,然后求得其一半的度数,从而求得答案.【题目详解】∵AB=AC,D为BC的中点,∴∠BAD=∠CAD,∵∠BAC=50°,∴∠DAC=25°,∵DE⊥AC,∴∠ADE=90°−25°=65°,故答案为65°.【题目点拨】本题考查了等腰三角形的性质,解题的关键是了解等腰三角形三线合一的性质,难度不大.15、1【题目详解】原式,方程组的解为,当,时,原式16、14.5【分析】如图,若设木棒AB长为x尺,则BC的长是(x-4)尺,而AC=1丈=10尺,然后根据勾股定理列出方程求解即可.【题目详解】解:如图所示,设木棒AB长为x尺,则木棒底端B离墙的距离即BC的长是(x-4)尺,在直角△ABC中,∵AC2+BC2=AB2,∴,解得:.故答案为:.【题目点拨】本题考查了勾股定理的应用,属于常考题型,正确理解题意、熟练掌握勾股定理是解题的关键.17、【分析】根据点A在正比例函数y=6x的图像上,设点A为(x,6x),由AB平行x轴,AB=BC,可以得到点B的坐标为:(7x,6x),代入计算,即可求出k的值.【题目详解】解:∵点A在正比例函数y=6x的图像上,则设点A为(x,6x),∵由AB平行x轴,∴点B的纵坐标为6x,∵△ABC是等腰直角三角形,∠ABC=90°,∴AB=BC=6x,∴点B的横坐标为:7x,即点B为:(7x,6x),把点B代入y=kx,则,∴;故答案为:.【题目点拨】本题考查了等腰直角三角形的性质,正比例函数的图像和性质,以及坐标与图形,解题的关键是利用点A的坐标,正确表示出点B的坐标.18、>【解题分析】解:∵,,∴.故答案为>.三、解答题(共78分)19、(1);(2)是等腰三角形,理由见解析【分析】(1)首先将前三项组合,利用完全平方公式分解因式,进而利用平方差公式分解因式得出即可;(2)首先将前两项以及后两项组合,进而提取公因式法分解因式,即可得出a,b,c的关系,判断三角形形状即可.【题目详解】解:(1)=(2)∵∴∴∴或,∴是等腰三角形.【题目点拨】此题主要考查了分组分解法分解因式以及等腰三角形的判定,正确分组分解得出是解题关键.20、(1)见解析;(2)【分析】(1)先确定点C的坐标,再利用关于y轴对称点的性质得出对应点位置即可得出答案;(2)直接利用关于x轴对称点的性质得出答案;【题目详解】(1)根据坐标平面得点C的坐标为:(2,1)画图如图所示;(2).【题目点拨】此题主要考查了轴对称变换,正确得出对应点位置是解题关键.21、(1)秒或秒;(2)15秒【分析】(1)Q点必须在BC上时,A,Q,F,P为顶点的四边形才能是平行四边形,分Q点在BF和Q点在CF上时分类讨论,利用平行四边形对边相等的性质即可求解;(2)分Q点在AB、BC、CD之间时逐个讨论即可求解.【题目详解】解:(1)∵以A、Q、F、P为顶点的四边形是平行四边形,且AP在AD上,∴Q点必须在BC上才能满足以A、Q、F、P为顶点的四边形是平行四边形∵四边形ABCD是平行四边形,∴AD=BC=30,AB=CD=10,∵点F是BC的中点,∴BF=CF=BC=15,AB+BF=25,情况一:当Q点在BF上时,AP=FQ,且AP=t,FQ=35-3t,故t=25-3t,解得;情况二:当Q点在CF上时,AP=FQ,且AP=t,FQ=3t-35,故t=3t-25,解得t=;故经过或秒,以A、Q、B、P为顶点的四边形是平行四边形;(2)情况一:当Q点在AB上时,0<t<,此时P点还未运动到AD的中点位置,故四边形AQFP面积小于平行四边形ABCD面积的一半,情况二:当Q点在BC上且位于BF之间时,,此时AP+FQ=t+35-3t=35-2t,∵,∴35-2t<30,四边形AQFP面积小于平行四边形ABCD面积的一半,情况三:当Q点在BC上且位于FC之间时,此时AP+FQ=t+3t-35=4t-35∵,∴4t-35<30,四边形AQFP面积小于平行四边形ABCD面积的一半,情况四:当Q点在CD上时,当AP=BF=15时,t=15,∴,∴当t=15秒时,以A、Q、F、P为顶点的四边形面积是平行四边形ABCD面积的一半,故答案为:15秒.【题目点拨】本题考查了平行四边形的判定和性质,根据动点的位置不同需要分多种情况分类讨论,熟练掌握平行四边形的性质是解决本题的关键.22、(1)见解析;(2)以A,E,C为顶点的三角形是等腰三角形时,点C的坐标为(3,0)【分析】(1)先根据等边三角形的性质得∠OBA=∠CBD=60°,OB=BA,BC=BD,则∠OBC=∠ABD,然后可根据“SAS”可判定△OBC≌△ABD;

(2)先根据全等三角形的性质以及等边三角形的性质,求得∠EAC=120°,进而得出以A,E,C为顶点的三角形是等腰三角形时,AE和AC是腰,最后根据Rt△AOE中,OA=1,∠OEA=30°,求得AC=AE=2,据此得到OC=1+2=3,即可得出点C的位置.【题目详解】(1)∵△AOB,△CBD都是等边三角形,∴OB=AB,CB=DB,∠OBA=∠CBD=60°,∴∠OBC=∠ABD,在△OBC和△ABD中,,∴△OBC≌△ABD(SAS);(2)∵△OBC≌△ABD,∴∠BOC=∠BAD=60°,又∵∠OAB=60°,∴∠OAE=180°﹣60°﹣60°=60°,∴∠EAC=120°,∠OEA=30°,

∴以A,E,C为顶点的三角形是等腰三角形时,AE和AC是腰,

∵在Rt△AOE中,OA=1,∠OEA=30°,

∴AE=2,

∴AC=AE=2,

∴OC=1+2=3,

∴当点C的坐标为(3,0)时,以A,E,C为顶点的三角形是等腰三角形.【题目点拨】本题考查了全等三角形的判定与性质,等边三角形的性质的运用,坐标与图形,等腰三角形的判定和性质.解决本题的关键是利用等腰三角形的性质求出点C的坐标.23、(1)见解析;(2)(-3,5);(3)1.【分析】(1)分别作出点A、B、C关于y轴的对称点,再顺次连接可得;

(2)根据所作图形可得A1点的坐标;

(3)根据割补法求解可得△的面积等于矩形的面积减去三个三角形的面积.【题目详解】解:(1)如图所示,△A1B1C1即为所求;

(2)由图知A1的坐标为(-3,5);故答案是:(-3,5);

(3)△的面积为4×4-×2×3-×1×4-×2×4=1.【题目点拨】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.24、(1)见解析;(1)m+n=5.5;(3)△A'B'C的面积:5.5【分析】(1)首先确定A、B、C三点关于y轴对称的点的位置,再连接即可;(1)根据关于y轴对称的点的坐标特点可得n﹣1=1,m=1.5,再计算m+n即可;(3)利用矩形的面积减去周围多余三角形的面积即可.【题目详解】解:(1)如图所示:△A′B′C′即为所求;(1)∵△ABC和△A′B′C′是关于y轴对称的图形,∴线段AB的中点是P(﹣1,m),线段A'B'的中点是(n﹣1,1.5)关于y轴对称,∴n﹣1=1,m=,∴n=3,∴m+n=;(3)△A'B'C的面积:=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论