版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省宣城市第六中学2024届八上数学期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在等腰三角形ABC中,BA=BC,∠ABC=120°,D为AC边的中点,若BC=6,则BD的长为()A.3 B.4 C.6 D.82.下列命题属于真命题的是()A.同旁内角相等,两直线平行 B.相等的角是对顶角C.平行于同一条直线的两条直线平行 D.同位角相等3.如图,在▱ABCD中,点E、F分别在边AB和CD上,下列条件不能判定四边形DEBF一定是平行四边形的是()A.AE=CF B.DE=BF C.∠ADE=∠CBF D.∠AED=∠CFB4.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…第n次移动到An.则△OA6A2020的面积是()A.505 B.504.5 C.505.5 D.10105.如果分式方程的解是,则的值是()A.3 B.2 C.-2 D.-36.下列图形中,是轴对称图形的是().A. B. C. D.7.下列命题是假命题的是A.同旁内角互补,两直线平行B.若两个数的绝对值相等,则这两个数也相等C.平行于同一条直线的两条直线也互相平行D.全等三角形的周长相等8.下列各组线段,能组成三角形的是()A.1cm、2cm、3cm B.2cm、2cm、4cmC.3cm、4cm、5cm D.5cm、6cm、11cm9.当为()时,分式的值为零.A.0 B.1 C.-1 D.210.如图所示,在第1个中,;在边上任取一点,延长到,使,得到第2个;在边上任取一点,延长到,使,得到第3个…按此做法继续下去,则第个三角形中以为顶点的底角度数是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是_____.12.如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°,若AB=20,则BD的长是.13.分式与的最简公分母为_______________14.已知△ABC为等边三角形,BD为△ABC的高,延长BC至E,使CE=CD=1,连接DE,则BE=___________,∠BDE=_________.15.平面直角坐标系中,点到原点的距离是_____.16.某校规定:学生的单科学期综合成绩是由平时、期中和期末三项成绩按3∶3∶4的比例计算所得.已知某学生本学期数学的平时、期中和期末成绩分别是90分、90分和95分,那么他本学期数学学期综合成绩是__________分17.已知实数m,n满足则=_____.18.的相反数是_________.三、解答题(共66分)19.(10分)计算:(1)(2)分解因式(3)解分式方程20.(6分)去年冬天某市遭遇持续暴雪天气,该市启用了清雪机,已知一台清雪机的工作效率相当于一名环卫工人工作效率的200倍,若用这台清雪机清理6000立方米的雪,要比120名环卫工人清理这些雪少用小时,试求一台清雪机每小时清雪多少立方米.21.(6分)甲、乙两人分别从丙、丁两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达丁地后,乙继续前行.设出发后,两人相距,图中折线表示从两人出发至乙到达丙地的过程中与之间的函数关系.根据图中信息,求:(1)点的坐标,并说明它的实际意义;(2)甲、乙两人的速度.22.(8分)已知:如图,,那么成立吗?为什么?下面是小丽同学进行的推理,请你将小丽同学的推理过程补充完整.解:成立,理由如下:(已知)①(同旁内角互补,两条直线平行)(②)又(已知),(等量代换)(③)(④).23.(8分)“金源”食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:方案一:从包装盒加工厂直接购买,购买所需的费用(元)与包装盒个数(个)满足图中的射线所示的函数关系;方案二:租赁机器自己加工,所需费用(元)(包括租赁机器的费用和生产包装盒的费用)与包装盒个数(个)满足图中射线所示的函数关系.根据图象解答下列问题:(1)点的坐标是_____________,方案一中每个包装盒的价格是___________元,射线所表示的函数关系式是_____________.(2)求出方案二中的与的函数关系式;(3)你认为选择哪种方案更省钱?请说明理由.24.(8分)平面直角坐标系xOy中,一次函数=-x+6的图象与x轴,y轴分别交于点A,B.坐标系内有点P(m,m-3).(1)问:点P是否一定在一次函数=-x+6的图象上?说明理由(2)若点P在△AOB的内部(不含边界),求m的取值范围(3)若=kx-6k(k>0),请比较,的大小25.(10分)阅读材料:我们学过一次函数的图象的平移,如:将一次函数的图象沿轴向右平移个单位长度可得到函数的图象,再沿轴向上平移个单位长度,得到函数的图象;如果将一次函数的图象沿轴向左平移个单位长度可得到函数的图象,再沿轴向下平移个单位长度,得到函数的图象.类似地,形如的函数图象的平移也满足此规律.仿照上述平移的规律,解决下列问题:(1)将一次函数的图象沿轴向右平移个单位长度,再沿轴向上平移个单位长度,得到函数________的图象(不用化简);(2)将的函数图象沿y轴向下平移个单位长度,得到函数________________的图象,再沿轴向左平移个单位长度,得到函数_________________的图象(不用化简);(3)函数的图象可看作由的图象经过怎样的平移变换得到?26.(10分)如图,点B、E、C、F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AC=DF.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据等腰三角形的性质三线合一可得直角三角形,再利用直角三角形的性质即可得到结论.【题目详解】解:∵BA=BC,∠ABC=120°,∴∠C=∠A=30°,∵D为AC边的中点,∴BD⊥AC,∵BC=6,∴BD=BC=3,故选:A.【题目点拨】本题考查了直角三角形的性质和等腰三角形的性质,熟练掌握等腰三角形与直角三角形的性质是解题的关键.2、C【解题分析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.【题目详解】A、同旁内角互补,两直线平行,是假命题;B、相等的角不一定是对顶角,是假命题;C、平行于同一条直线的两条直线平行,是真命题;D、两直线平行,同位角相等,是假命题;故选C.【题目点拨】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.3、B【分析】根据平行四边形的判定方法一一判断即可;【题目详解】解:A、由AE=CF,可以推出DF=EB,结合DF∥EB,可得四边形DEBF是平行四边形;B、由DE=BF,不能推出四边形DEBF是平行四边形,有可能是等腰梯形;C、由∠ADE=∠CBF,可以推出△ADE≌△CBF,推出DF=EB,结合DF∥EB,可得四边形DEBF是平行四边形;D、由∠AED=∠CFB,可以推出△ADE≌△CBF,推出DF=EB,结合DF∥EB,可得四边形DEBF是平行四边形;故选:B.【题目点拨】本题考查平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4、A【分析】由题意结合图形可得OA4n=2n,由2020÷4=505,推出OA2020=2020÷2=1010,A6到x轴距离为1,由此即可解决问题.【题目详解】解:由题意知OA4n=2n,∵2020÷4=505,∴OA2020=2020÷2=1010,A6到x轴距离为1,则△OA6A2020的面积是×1010×1=505(m2).故答案为A.【题目点拨】本题主要考查点的坐标的变化规律,发现图形得出下标为4的倍数时对应长度即为下标的一半是解题的关键.5、C【分析】先把代入原方程,可得关于a的方程,再解方程即得答案.【题目详解】解:∵方程的解是,∴,解得:a=﹣1.经检验,a=﹣1符合题意.故选:C.【题目点拨】本题考查了分式方程的解及其解法,属于基本题型,熟练掌握分式方程的解法是解题关键.6、A【分析】轴对称图形的定义:图形沿某一条直线折叠后,直线两旁的部分重合,则这个图形是轴对称图形;根据轴对称图形定义,逐个判断,即可得到答案.【题目详解】四个选项中,A是轴对称图形,其他三个不是轴对称图形;故选:A.【题目点拨】本题考查了轴对称图形的知识;解题的关键是熟练掌握轴对称图形的定义,即可完成求解.7、B【解题分析】根据平行线的判定,绝对值和全等三角形的性质判断即可.【题目详解】A.同旁内角互补,两直线平行,是真命题;B.若两个数的绝对值相等,则这两个数相等或互为相反数,是假命题;C.平行于同一条直线的两条直线也互相平行,是真命题;D.全等三角形的周长相等,是真命题.故选B.【题目点拨】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.8、C【分析】根据三角形的三边关系,逐一比较两条较小边的和与最大边的大小即可得答案.【题目详解】A.1+2=3,不能构成三角形,故该选项不符合题意,B.2+2=4,不能构成三角形,故该选项不符合题意,C.3+4>5,能构成三角形,故该选项符合题意,D.5+6=11,不能构成三角形,故该选项不符合题意,故选:C.【题目点拨】本题考查三角形的三边关系,三角形任意两边之和大于第三边,任意两边之差小于第三边.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.9、B【解题分析】要使分式的值为零,需要分式的分子为零而分母不为零,据此列式解答即可.【题目详解】根据题意可得,,∴当x=1时,分式的值为零.故选B.【题目点拨】本题考查分式的值何时为0,熟知分式值为0条件:分子为0且分母不为0是解题的关键.10、C【解题分析】先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2的度数,找出规律即可得出第n个三角形中以An为顶点的底角度数.【题目详解】解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得∠EA3A2=()2×75°…∴第n个三角形中以An为顶点的底角度数是()n−1×75°.故选C.【题目点拨】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2的度数,找出规律是解答此题的关键.二、填空题(每小题3分,共24分)11、85°.【分析】根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°,进而利用三角形内角和得出∠BDC的度数.【题目详解】∵在△ABC中,∠A=50°,∠ABC=70°,∴∠C=60°,∵BD平分∠ABC,∴∠DBC=35°,∴∠BDC=180°﹣60°﹣35°=85°.故答案为85°.12、1【题目详解】试题分析:根据同角的余角相等知,∠BCD=∠A=30°,所以分别在△ABC和△BDC中利用30°锐角所对的直角边等于斜边的一半即可求出BD.解:∵在直角△ABC中,∠ACB=90°,∠A=30°,且CD⊥AB∴∠BCD=∠A=30°,∵AB=20,∴BC=AB=20×=10,∴BD=BC=10×=1.故答案为1.考点:含30度角的直角三角形.13、ab1【分析】最简公分母是按照相同字母取最高次幂,所有不同字母都写在积里,则易得分式与的最简公分母为ab1.【题目详解】∵和中,字母a的最高次幂是1,字母b的最高次幂是1,∴分式与的最简公分母为ab1,故答案为ab1【题目点拨】本题考查了最简公分母:通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.14、1120°【分析】根据等腰三角形和10度角所对直角边等于斜边的一半,得到BC的长,进而得到BE的长,根据三角形外角性质求出∠E=∠CDE=10°,进而得出∠BDE的度数.【题目详解】∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC.∵BD为高线,∴∠BDC=90°,∠DBC∠ABC=10°,∴BC=2DC=2,∴BE=BC+CE=2+1=1.∵CD=CE,∴∠E=∠CDE.∵∠E+∠CDE=∠ACB=60°,∴∠E=∠CDE=10°,∴∠BDE=∠BDC+∠CDE=120°.故答案为:1,120°.【题目点拨】本题考查了等边三角形性质,含10度角的直角三角形的性质,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出BD的长.15、【分析】作轴于,则,,再根据勾股定理求解.【题目详解】作轴于,则,.则根据勾股定理,得.故答案为.【题目点拨】此题考查了点的坐标的知识以及勾股定理的运用.点到x轴的距离即为点的纵坐标的绝对值.16、1【分析】根据加权平均数的定义即可求解.【题目详解】依题意得本学期数学学期综合成绩是90×+90×+95×=1故答案为:1.【题目点拨】此题主要考查加权平均数,解题的关键是熟知加权平均数的求解方法.17、【分析】根据完全平方公式进行变形,得到可得到结果,再开方即可得到最终结果.【题目详解】,代入可得,所以故答案为:.【题目点拨】考查利用完全平方公式求代数式的值,学生熟练掌握完全平方公式是本题解题的关键,并利用开平方求得最后的结果.18、【分析】根据相反数的意义,可得答案.【题目详解】−的相反数是,故答案为.【题目点拨】本题考查相反数,掌握相反数的定义是关键.三、解答题(共66分)19、(1),;(2),;(3),【分析】(1)根据整式的混合运算法则进行计算即可;(2)根据提公因式法和公式法进行因式分解;(3)先把分式方程化为整式方程求出x的值,再代入最简公分母进行检验即可.【题目详解】解::(1),;(2),;(3)方程两边同时乘得:,去括号、移项得:,解得:,经检验,是原方程的解,所以,方程两边同时乘得:,去括号、移项得:,解得:,经检验,是原方程的解,所以.【题目点拨】本题综合考查了整式的混合运算、因式分解和分式方程的解法,要注意分式方程求解后要验根.20、一台清雪机每小时晴雪1500立方米.【分析】解设出环卫工人每小时清雪立方米,则一台清雪机每小时清雪立方米,根据等量关系式:一台清雪机清理6000立方米的积雪所用时间=120名环卫工人清理积雪所用时间-小时,列出方程即可求解.【题目详解】解:设一名环卫工人每小时清雪立方米,则一台清雪机每小时清雪立方米根据题意得:解得:检验:是原方程得解当时,.答:一台清雪机每小时晴雪1500立方米.【题目点拨】本题考查的是分式方程的应用,根据题目意思设出未知数,找出等量关系式是解此题的关键.21、(1)B(1,0),点B的实际意义是甲、乙两人经过1小时相遇;(2)6km/h,4km/h.【分析】(1)两人相向而行,当相遇时y=0本题可解;
(2)分析图象,可知两人从出发到相遇用1小时,甲由相遇点到丁地只用小时,乙走这段路程要用1小时,依此可列方程.【题目详解】(1)设AB解析式为
把已知点P(0,10),(,),代入得,解得:∴,
当时,,
∴点B的坐标为(1,0),
点B的意义是:
甲、乙两人分别从丙、丁两地同时出发后,经过1个小时两人相遇.(2)设甲的速度为,乙的速度为,
由已知第小时时,甲到丁地,则乙走1小时路程,甲只需要小时,∴,∴,∴甲、乙的速度分别为、.【题目点拨】本题考查一次函数图象性质,解答问题时要注意函数意义.同时,要分析出各个阶段的路程关系,并列出方程.22、AB∥CD;两直线平行,同位角相等;内错角相等,两直线平行;两直线平行,内错角相等.【分析】根据平行线的判定推出AB∥CD,根据平行线的性质和已知得出∠DCE=∠D,推出AD∥BE,根据平行线的性质推出即可.【题目详解】,∴AB∥CD(同旁内角互补,两直线平行),∴∠B=∠DCE(两直线平行,同位角相等),∵∠B=∠D,∴∠DCE=∠D,∴AD∥BE(内错角相等,两直线平行),∴∠E=∠DFE(两直线平行,内错角相等),故答案为:AB∥CD;两直线平行,同位角相等;内错角相等,两直线平行;两直线平行,内错角相等.【题目点拨】本题考查了对平行线的性质和判定的应用,主要考查学生的推理能力.23、(1),,;(2);(3)当需要包装盒小于个时,选择方案一省钱:当需要包装盒大于个时,选择方案二省钱,见解析【分析】(1)根据图像即可得出A的坐标,用价格=费用包装盒个数,假设出射线所表示的函数关系式是:,将A代入即可;(2)设的函数关系式是,把点,代入,求解即可得与的函数关系式;(3)根据图象经过的点的坐标用待定系数法求得函数的解析式即可;求出当x的值为多少时,两种方案同样省钱,并据此分类讨论最省钱的方案即可.【题目详解】解:(1)由图像可知:A,∴方案一中每个包装盒的价格是:(元),设射线所表示的函数关系式是:把A代入得:解得:∴;故答案为:,,.(2)设的函数关系式是.图象过点,解得.方案二中的函数表达式是.(3)当时,.(元)当需要包装盒个时,方案一和方案二所需钱数都是元;根据图象可知:当需要包装盒小于个时,选择方案一省钱:当需要包装盒大于个时,选择方案二省钱.【题目点拨】本题考查了一次函数的应用,解题的关键是从实际问题中整理出函数模型,并利用函数的知识解决实际问题.24、(1)点P不一定在函数的图像上,理由详见解析;(2);(3)详见解析.【分析】(1)要判断点P(m,m−3)是否在函数图象上,只要把这个点的坐标代入函数解析式,观察等式是否成立即可;(2)由题意可得0<m<6,0<m−3<6,m−3<−m+6,解不等式即可求出m的取值范围;(3)求出过点(6,0),然后根据k>0,利用一次函数的性质分段比较,的大小即可.【题目详解】解:(1)不一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版二手房独家授权销售合同3篇
- 2025年度出租车充电桩建设与维护合同3篇
- 二零二五年酒店宴会部经理招聘与服务质量提升合同3篇
- 二零二五版房产中介佣金结算及售后服务合同范本3篇
- 2024年船舶制造与维修合同
- 2025年新型纱窗产品研发与知识产权保护协议2篇
- 2025年散装粮食海运协议6篇
- 专业质量检测服务工程协议样本版
- 二零二五版合同部合同管理流程再造与效率提升合同3篇
- 二零二五年度消防设施安全检测与维护服务协议
- 啤酒糖化车间物料衡算与热量衡算
- 毕淑敏心理咨询手记在线阅读
- 亚硝酸钠安全标签
- pcs-985ts-x说明书国内中文版
- 小品《天宫贺岁》台词剧本手稿
- 医院患者伤口换药操作课件
- 欠薪强制执行申请书
- 矿山年中期开采重点规划
- 资源库建设项目技术规范汇编0716印刷版
- GC2级压力管道安装质量保证体系文件编写提纲
- 预应力混凝土简支小箱梁大作业计算书
评论
0/150
提交评论