版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省盐城市洋马初级中学2024届八年级数学第一学期期末联考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20° B.35° C.40° D.70°2.化简式子的结果为()A. B. C. D.3.如果在y轴上,那么点P的坐标是A. B. C. D.4.计算的结果是A. B. C. D.5.如图,已知在平面直角坐标系中,四边形ABCD是菱形,其中B点坐标是(8,2),D点坐标是(0,2),点A在x轴上,则菱形ABCD的周长是()A.2B.8C.8D.126.在平面直角坐标系中,点与点关于轴对称,则在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.四边形ABCD中,若∠A+∠C+∠D=280°,则∠B的度数为()A.80°B.90°C.170°D.20°8.已知反比例函数图像经过点(2,—3),则下列点中必在此函数图像上的是()A.(2,3) B.(1,6) C.(—1,6) D.(—2,—3)9.下式等式从左到右的变形,属于因式分解的是()A.; B.;C.; D..10.下列各命题是真命题的是()A.过一点有且只有一条直线与已知直线垂直. B.三角形任意两边之和小于第三边.C.三角形的一个外角大于它的任何一个内角. D.同位角相等.二、填空题(每小题3分,共24分)11.满足的整数的和是__________.12.计算-=__________.13.在平面直角坐标系中,已知一次函数y=﹣2x+1的图象经过A(a,m),B(a+1,n)两点,则m_____n.(填“>”或“<”)14.如图,小颖同学折叠一个直角三角形的纸片,使与重合,折痕为,若已知,,则的长为________.15.在中,,若,则________________度16.如图,点F是△ABC的边BC延长线上一点,DF⊥AB于点D,∠A=30°,∠F=40°,∠ACF的度数是_____.17.不等式组的解为,则的取值范围是______.18.如图,△ABC中,∠ACB=90°,AC=8,BC=6,分别以△ABC的边AB、BC、CA为一边向△ABC外作正方形ABDE、BCMN、CAFG,连接EF、ND,则图中阴影部分的面积之和等于_____.三、解答题(共66分)19.(10分)为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生已知用300元购买甲种文具的个数是用50元购买乙种文具个数的2倍,购买1个甲种文具比购买1个乙种文具多花费10元.(1)求购买一个甲种文具、一个乙种文具各需多少元;(2)若学校计划购买这两种文具共120个,投入资金不多于1000元,且甲种文具至少购买36个,求有多少种购买方案.20.(6分)解方程与不等式组(1)解方程:(2)解不等式组21.(6分)为做好食堂的服务工作,某学校食堂对学生最喜爱的菜肴进行了抽样调查,下面试根据收集的数据绘制的统计图(不完整):(1)参加抽样调查的学生数是______人,扇形统计图中“大排”部分的圆心角是______°;(2)把条形统计图补充完整;(3)若全校有3000名学生,请你根据以上数据估计最喜爱“烤肠”的学生人数.22.(8分)已知:如图,,.求证:.(写出证明过程及依据)23.(8分)两个不相等的实数,满足.(1)若,求的值;(2)若,,求和的值.24.(8分)如图,把一张长方形纸片ABCD沿EF折叠,点C与点A重合,点D落在点G处.若长方形的长BC为16,宽AB为8,求:(1)AE和DE的长;(2)求阴影部分的面积.25.(10分)解分式方程:1.26.(10分)如图,在边长为1的小正方形组成的10×10网络中(我们把组成网格的小正方形的顶点称为格点),△ABC的三个顶点分别在网格的格点上(1)请你在所给的网格中建立平面直角坐标系,使△ABC的顶点A的坐标为(-3,5);(2)在(1)的坐标系中,直接写出△ABC其它两个顶点的坐标;(3)在(1)的坐标系中,画出△ABC关于y轴对称的图形△A1B1C1.
参考答案一、选择题(每小题3分,共30分)1、B【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.【题目详解】∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选B.【题目点拨】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.2、D【分析】根据二次根式有意义的条件即可求出a的取值范围,然后根据二次根式的除法公式和分母有理化化简即可.【题目详解】解:,即,故选:D.【题目点拨】此题考查的是二次根式的化简,掌握二次根式有意义的条件、二次根式的除法公式和分母有理化是解题关键.3、B【分析】根据点在y轴上,可知P的横坐标为1,即可得m的值,再确定点P的坐标即可.【题目详解】解:∵在y轴上,∴解得,∴点P的坐标是(1,-2).故选B.【题目点拨】解决本题的关键是记住y轴上点的特点:横坐标为1.4、B【分析】首先通分,然后进行同分母分式的减法运算即可.【题目详解】.故选:B.【题目点拨】此题考查了分式的加减法.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.5、C【分析】连接AC、BD交于点E,由菱形的性质得出AC⊥BD,AE=CE=AC,BE=DE=BD,由点B的坐标和点D的坐标得出OD=2,求出DE=4,AD=2,即可得出答案.【题目详解】连接AC、BD交于点E,如图所示:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,AE=CE=AC,BE=DE=BD,∵点B的坐标为(8,2),点D的坐标为(0,2),∴OD=2,BD=8,∴AE=OD=2,DE=4,∴AD==2,∴菱形的周长=4AD=8;故选:C.【题目点拨】本题考查了菱形的性质、坐标与图形性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.6、C【分析】直接利用关于x轴对称点的性质得出a,b的值,进而根据a,b的符号判断在第几象限.【题目详解】解:∵点与点关于轴对称,∴∴点在第三象限,故答案选C.【题目点拨】本题主要考查关于x轴对称点的坐标的特点,关键是掌握点的坐标的变化规律.7、A【解题分析】试题分析:四边形的内角和为360°,∴∠B=360°-(∠A+∠C+∠D)=360°-280°=80°,故选A.8、C【解题分析】先根据反比例函数经过点(2,-3)求出k的值,再对各选项进行逐一分析即可.【题目详解】∵反比例函数经过点(2,-3),∴k=2×-3=-1.A、∵2×3=1≠-1,∴此点不在函数图象上,故本选项错误;B、∵1×1=1≠-1,∴此点不在函数图象上,故本选项错误;C、∵(-1)×1=-1,∴此点在函数图象上,故本选项正确;D、∵(-2)×(-3)=1≠-1,∴此点不在函数图象上,故本选项错误.故选C.【题目点拨】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.9、C【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【题目详解】A.是整式的乘法,故A错误;B.没把一个多项式转化成几个整式积的形式,故B错误;C.把一个多项式转化成几个整式积的形式,故C正确;D.没把一个多项式转化成几个整式积的形式,故D错误;故选C.【题目点拨】此题考查因式分解的意义,解题关键在于掌握运算法则10、A【分析】根据命题的真假依次判断即可求解.【题目详解】A.过一点有且只有一条直线与已知直线垂直,正确.B.三角形任意两边之和大于第三边,故错误.C.三角形的一个外角大于它的任何一个不相邻的内角,故错误.D.两直线平行,同位角相等,故错误.故选A.【题目点拨】此题主要考查命题真假的判断,解题的关键是熟知三角形的性质及平行线、相交线的性质.二、填空题(每小题3分,共24分)11、1【分析】根据估算无理数的大小的方法确定和的范围,可知满足条件的整数的情况.【题目详解】∵,,∴,,∴,满足条件的整数为:2,3,4,5,∴满足条件的整数的和为2+3+4+5=1.故答案为:1.【题目点拨】本题主要考查估算无理数的大小的知识点,解题关键是确定无理数的整数部分,比较简单.12、-2【分析】先化简再进行计算【题目详解】解:-=-2【题目点拨】本题考查二次根式和三次根式的计算,关键在于基础知识的掌握.13、>【解题分析】将点A,点B坐标代入可求m,n的值,即可比较m,n的大小.【题目详解】解:∵一次函数y=﹣2x+1的图象经过A(a,m),B(a+1,n)两点,∴m=﹣2a+1,n=﹣2a﹣1∴m>n故答案为>【题目点拨】本题考查了一次函数图象上点的坐标特征,熟练掌握函数图象上的点的坐标满足函数解析式.14、【分析】连接BE,根据线段垂直平分线性质可得BE=AE,再由勾股定理可得CB²+CE²=BE².【题目详解】解:连接BE由折叠可知,DE是AB的垂直平分线
∴BE=AE
设CE为x,则BE=AE=8-x
在Rt△BCE中,
由勾股定理,得
CB²+CE²=BE²
∴6²+x²=(8-x)²
解得∴CE=【题目点拨】考核知识点:勾股定理.根据折叠的性质,把问题转化为利用勾股定理来解决.15、1【分析】根据等腰三角形的性质和三角形内角和定理即可求出答案.【题目详解】∵∴∵∴故答案为:1.【题目点拨】本题主要考查等腰三角形的性质和三角形内角和定理,掌握等腰三角形的性质和三角形内角和定理是解题的关键.16、80°【分析】根据三角形的内角和可得∠AED=60°,再根据对顶角相等可得∠AED=∠CEF=60°,再利用三角形的内角和定理即可求解.【题目详解】解:∵DF⊥AB,∴∠ADE=90°,∵∠A=30°,∴∠AED=∠CEF=90°﹣30°=60°,∴∠ACF=180°﹣∠F﹣∠CEF=180°﹣40°﹣60°=80°,故答案为:80°.【题目点拨】本题考查三角形的内角和定理、对顶角相等,灵活运用三角形的内角和定理是解题的关键.17、【分析】根据不等式组的公共解集即可确定a的取值范围.【题目详解】由不等式组的解为,可得.
故答案为:.【题目点拨】本题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.18、1【分析】如图将△FAE绕点A顺时针旋转90°得到△KAB.首先证明S△ABK=S△ABC=S△AFE,同理可证S△BDN=S△ABC,推出S△AEF+S△BDN=2•S△ABC,由此即可解决问题.【题目详解】如图将△FAE绕点A顺时针旋转90°得到△KAB.∵∠FAC=∠EAB=90°,∴∠FAE+∠CAB=180°,∵∠FAE=∠KAB,∴∠KAB+∠CAB=180°,∴C、A、K共线,∵AF=AK=AC,∴S△ABK=S△ABC=S△AFE,同理可证S△BDN=S△ABC,∴S△AEF+S△BDN=2•S△ABC=2××6×8=1,故答案为:1.【题目点拨】本题考查的是勾股定理、正方形的性质、旋转变换等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题.三、解答题(共66分)19、(1)购买一个甲种文具15元,一个乙种文具5元;(2)有5种购买方案【分析】(1)设购买一个乙种文具x元,则一个甲种文具(x+10)元,根据“用300元购买甲种文具的个数是用50元购买乙种文具个数的2倍,”列方程解答即可;
(2)设购买甲种文具a个,则购买乙种文具(120-a)个,根据题意列不等式组,解之即可得出a的取值范围,结合a为正整数即可得出a的值,进而可找出各购买方案.【题目详解】解:(1)设购买一个乙种文具x元,则一个甲种文具(x+10)元,由题意得:
,解得x=5,经检验,x=5是原方程的解,且符合题意,x+10=15(元),
答:购买一个甲种文具15元,一个乙种文具5元;
(2)设购买甲种文具a个,则购买乙种文具(120-a)个,根据题意得:
,
解得36≤a≤1,
∵a是正整数,
∴a=36,37,38,39,1.
∴有5种购买方案.【题目点拨】本题考查分式方程的应用、一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.20、(1);(2)【分析】(1)先把分母化为相同的式子,再进行去分母求解;(2)依次解出各不等式的解集,再求出其公共解集.【题目详解】解:(1)原分式方程可化为,方程两边同乘以得:解这个整式方程得:检验:当,所以,是原方程的根(2)解不等式①得:解不等式②得:不等式①、②的解集表示在同一数轴上:所以原不等式组的解集为:【题目点拨】此题主要考查分式方程、不等式组的求解,解题的关键是熟知分式方程的解法及不等式的性质.21、(1)200,144;(2)答案见解析;(3)600【分析】(1)根据喜爱鸡腿的人数是50人,所占的百分比是25%即可求得调查的总人数;(2)利用调查的总人数减去其它组的人数即可求得喜爱烤肠的人数;(3)利用总人数3000乘以对应的比例即可求解.【题目详解】解:(1)参加调查的人数是:50÷25%=200(人),扇形统计图中“大排”部分的圆心角的度数是:360×=144°.故答案为200,144;(2)喜爱烤肠的人数是:200﹣80﹣50﹣30=40(人),补充条形统计图如下:(3)估计最喜爱“烤肠”的学生人数是:3000×=600(人).【题目点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22、证明见解析.【分析】由EG∥FH得∠OEG=∠OFH,从而得∠AEF=∠DFE,进而得AB∥CD,即可得到结论.【题目详解】∵EG∥FH(已知),∴∠OEG=∠OFH(两直线平行,内错角相等),∵∠1=∠2(已知),∴∠OEG+∠1=∠OFH+∠2(等式的基本性质),即∠AEF=∠DFE,∴AB∥CD(内错角相等,两直线平行),∴∠BEF+∠DFE=180°(两直线平行,同旁内角互补).【题目点拨】本题主要考查平行线的性质和判定定理,掌握平行线的判定与性质定理是解题的关键.23、(1)-12;(2);.【分析】(1)将两边同时平方即可求出mn的值;(2)根据,得,,然后进行变形求解即可.【题目详解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度曹瑞与张丽离婚协议中子女抚养及生活费用协议3篇
- 2025年度家禽饲料原料采购与家禽买卖合同书3篇
- 2024版铁塔公司基站用地租赁协议样本一
- 2025年度医疗器械展承办合同4篇
- 2024庭院立体绿化设计与施工合同3篇
- 2025年PVC消防管道设备采购销售专项合同3篇
- 2025年金丽麻布项目投资可行性研究分析报告
- 教案资源:小熊的彩虹滑梯课件公开课教学设计资料
- 2025年安徽通 用生物系统有限公司招聘笔试参考题库含答案解析
- 2025年度个人公司资产剥离合同范本:评估与定价策略4篇
- 细胞库建设与标准制定-洞察分析
- 2024年国家公务员录用考试公共基础知识复习题库2500题及答案
- DB3309T 98-2023 登步黄金瓜生产技术规程
- 2024年萍乡卫生职业学院单招职业技能测试题库标准卷
- DBJ41-T 108-2011 钢丝网架水泥膨胀珍珠岩夹芯板隔墙应用技术规程
- 2025年学长引领的读书会定期活动合同
- 表内乘除法口算l练习题1200道a4打印
- 《EICC培训讲义》课件
- 2025年四川省政府直属事业单位招聘管理单位笔试遴选500模拟题附带答案详解
- 2024年物业公司服务质量保证合同条款
- 文言文阅读之理解实词含义(讲义)-2025年中考语文专项复习
评论
0/150
提交评论