2024届甘肃省酒泉市瓜州县数学八上期末联考模拟试题含解析_第1页
2024届甘肃省酒泉市瓜州县数学八上期末联考模拟试题含解析_第2页
2024届甘肃省酒泉市瓜州县数学八上期末联考模拟试题含解析_第3页
2024届甘肃省酒泉市瓜州县数学八上期末联考模拟试题含解析_第4页
2024届甘肃省酒泉市瓜州县数学八上期末联考模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届甘肃省酒泉市瓜州县数学八上期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,分别以Rt△ABC的直角边AC、BC为边,在Rt△ABC外作两个等边三角形△ACE和△BCF,连接BE、AF分别交AC、BC边于H、D两点.下列结论:①AF=BE;②∠AFC=∠EBC;③∠FAE=90°;④BD=FD,其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个2.若x<2,化简+|3-x|的正确结果是()A.-1 B.1 C.2x-5 D.5-2x3.已知一次函数y=mx+n﹣2的图象如图所示,则m、n的取值范围是()A.m>0,n<2 B.m>0,n>2 C.m<0,n<2 D.m<0,n>24.下面有4个汽车标志图案,其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个5.在一次数学实践活动中,杨阳同学为了估计一池塘边两点间的距离,如下图,先在池塘边取一个可以直接到达点和点的点连结测得,则间的距离不可能是()A. B. C. D.6.在同一坐标系中,函数与的大致图象是()A. B. C. D.7.如图,点C、B分别在两条直线y=﹣3x和y=kx上,点A、D是x轴上两点,若四边形ABCD是正方形,则k的值为()A.3 B.2 C. D.8.在平面直角坐标系中,点(-1,2)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.解分式方程时,去分母后变形为A. B.C. D.10.的平方根是()A.9 B.9或-9 C.3 D.3或-3二、填空题(每小题3分,共24分)11.已知和关于x轴对称,则值为_____.12.若与点关于轴对称,则的值是___________;13.如图,在锐角三角形ABC中,AB=10,S△ABC=30,∠ABC的平分线BD交AC于点D,点M、N分别是BD和BC上的动点,则CM+MN的最小值是_____.14.如果多边形的每个内角都等于,则它的边数为______.15.如果Rt△ABC是轴对称图形,且斜边AB的长是10cm,则Rt△ABC的面积是_____cm1.16.如图,有一块四边形草地,,.则该四边形草地的面积是___________.17.如图,已知点.规定“把点先作关于轴对称,再向左平移1个单位”为一次变化.经过第一次变换后,点的坐标为_______;经过第二次变换后,点的坐标为_____;那么连续经过2019次变换后,点的坐标为_______.18.如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,BD的长为_____.三、解答题(共66分)19.(10分)如图,为等边三角形,延长到,延长到,,连结,,求证:.20.(6分)计算题(1)(2)21.(6分)如图,已知AB=DC,AC=BD,求证:∠B=∠C.22.(8分)第7届世界军人运动会于2019年10月18日在武汉开幕,为备战本届军运会,某运动员进行了多次打靶训练,现随机抽取该运动员部分打靶成绩进行整理分析,共分成四组:(优秀)、(良好)、(合格)、(不合格),绘制了如下不完整的统计图:根据以上信息,解答下列问题:(1)直接写出本次统计成绩的总次数和图中的值.(2)求扇形统计图中(合格)所对应圆心角的度数.(3)请补全条形统计图.23.(8分)中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽取了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题:(1)写出扇形图中______,并补全条形图;(2)样本数据的平均数是______,众数是______,中位数是______;(3)该区体育中考选报引体向上的男生共有1200人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?24.(8分)图1,图2都是由边长为1的小等边三角形构成的网络,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,选取一个涂上阴影,使得6个阴影小等边三角形组成一个中心对称图形.25.(10分)如图,与均为等腰直角三角形,(1)如图1,点在上,点与重合,为线段的中点,则线段与的数量关系是,与的位置是.(2)如图2,在图1的基础上,将绕点顺时针旋转到如图2的位置,其中在一条直线上,为线段的中点,则线段与是否存在某种确定的数量关系和位置关系?证明你的结论.(3)若绕点旋转任意一个角度到如图3的位置,为线段的中点,连接、,请你完成图3,猜想线段与的关系,并证明你的结论.26.(10分)如图,在平行四边形ABCD中,BCD的平分线与BA的延长线相交于点E,求证:BE=BC.

参考答案一、选择题(每小题3分,共30分)1、C【分析】由等边三角形的性质得出BC=CF,CE=AC,∠BCF=∠ACE=∠CFB=∠CBF=∠CAE=60°,∠ACB=90°,易证∠BCE=∠FCA=150°,由SAS证得△BCE≌△FCA,得出AF=BE,∠AFC=∠EBC,由∠FCA=150°,得出∠FAC<30°,则∠FAE=∠FAC+∠CAE<90°,由∠BFD<∠BFC,得出∠BFD<∠CBF,则DF>BD,即可得出结果.【题目详解】∵△ACE和△BCF是等边三角形,∴BC=CF,CE=AC,∠BCF=∠ACE=∠CFB=∠CBF=∠CAE=60°,∠ACB=90°,∴∠BCE=90°+60°=150°,∠FCA=60°+90°=150°,∴∠BCE=∠FCA.在△BCE和△FCA中,∵,∴△BCE≌△FCA(SAS),∴AF=BE,∠AFC=∠EBC,故①、②正确;∵∠FCA=60°+90°=150°,∴∠FAC<30°.∵∠CAE=60°,∴∠FAE=∠FAC+∠CAE<90°,故③错误;∵∠BFD<∠BFC,∴∠BFD<∠CBF,∴DF>BD,故④错误.故选:C.【题目点拨】本题考查了全等三角形的判定与性质、等边三角形的性质、三角形内角和定理、三角形三边关系等知识;熟练掌握等边三角形的性质,证明三角形全等是解题的关键.2、D【解题分析】分析:本题利用绝对值的化简和二次根式的化简得出即可.解析:∵x<2,∴+|3﹣x|=.故选D.3、D【解题分析】试题分析:∵一次函数y=mx+n-1的图象过二、四象限,∴m<0,∵函数图象与y轴交于正半轴,∴n-1>0,∴n>1.故选D.考点:一次函数图象与系数的关系.4、C【分析】轴对称图形的定义:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.【题目详解】前三个均是轴对称图形,第四个不是轴对称图形,故选C.【题目点拨】本题考查的是轴对称图形,本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.5、D【分析】根据三角形的三边关系即可得出结论.【题目详解】解:∵中,∴15-12<AB<15+12∴3<AB<27由各选项可知:只有D选项不在此范围内故选D.【题目点拨】此题考查的是三角形三边关系的应用,掌握三角形的三边关系是解决此题的关键.6、B【分析】根据一次函数与正比例函数的性质对四个选项进行逐一分析即可.【题目详解】A、函数中的<0,而函数中<0,则>0,两个的取值不一致,故此选项错误;

B、函数的<0,而函数中>0,则<0,两个的取值一致,故此选项正确;

C、函数的>0,而函数中>0,则<0,两个的取值不一致,故此选项错误;

D、图象中无正比例函数图象,故此选项错误;

故选:B.【题目点拨】本题主要考查了一次函数图象,关键是掌握正比例函数的性质和一次函数的性质.7、D【分析】设点C的横坐标为m,则点C的坐标为(m,﹣3m),点B的坐标为(﹣,﹣3m),根据正方形的性质,即可得出关于k的分式方程,解之经检验后即可得出结论.【题目详解】解:设点C的横坐标为m,∵点C在直线y=-3x上,∴点C的坐标为(m,﹣3m),∵四边形ABCD为正方形,∴BC∥x轴,BC=AB,又点B在直线y=kx上,且点B的纵坐标与点C的纵坐标相等,∴点B的坐标为(﹣,﹣3m),∴﹣﹣m=﹣3m,解得:k=,经检验,k=是原方程的解,且符合题意.故选:D.【题目点拨】本题考查正方形的性质,正比例函数的图象与性质以及解分式方程等知识点,灵活运用性质是解题的关键.8、B【分析】根据各象限内点的坐标特征解答即可.【题目详解】∵点(-1,2)的横坐标为负数,纵坐标为正数,∴点(-1,2)在第二象限.故选B.【题目点拨】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9、D【解题分析】试题分析:方程,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D.考点:解分式方程的步骤.10、D【分析】根据算术平方根的定义和平方根的定义计算即可.【题目详解】解:∵=9∴的平方根为3或-3故选D.【题目点拨】此题考查的是算术平方根和平方根的计算,掌握算术平方根的定义和平方根的定义是解决此题的关键.二、填空题(每小题3分,共24分)11、1【分析】根据平面直角坐标系中任意一点,关于轴的对称点是.根据这一结论求得,的值,再进一步计算.【题目详解】解:关于轴对称的两个点的坐标特征为横坐标相等,纵坐标互为相反数,和关于轴对称,,,解得,,,故答案是:1.【题目点拨】本题考查的是关于坐标轴对称的点的坐标的性质,熟悉相关性质是解题的关键.12、1【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案.【题目详解】由点与点的坐标关于y轴对称,得:

,,解得:,,∴.故答案为:.【题目点拨】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.13、1【分析】过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.【题目详解】解:过点C作CE⊥AB于点E,交BD于点M′,过点M作MN′⊥BC于N′,∵BD平分∠ABC,M′E⊥AB于点E,M′N′⊥BC于N∴M′N′=M′E,∴CE=CM′+M′E∴当点M与M′重合,点N与N′重合时,CM+MN的最小值.∵三角形ABC的面积为30,AB=10,∴×10×CE=30,∴CE=1.即CM+MN的最小值为1.故答案为1.【题目点拨】本题考查的是轴对称-最短路线问题,解题的关键是学会利用垂线段最短解决最短问题,属于中考常考题型.14、1【分析】先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.【题目详解】∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n=360°÷30°=1.故答案为1.【题目点拨】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.15、15【分析】根据题意可得,△ABC是等腰直角三角形,根据斜边AB是10cm,求出直角边的长,最后根据三角形面积公式得出答案即可.【题目详解】解:∵Rt△ABC是轴对称图形,∴△ABC是等腰直角三角形,∵斜边AB的长是10cm,∴直角边长为(cm),∴Rt△ABC的面积=(cm1);故答案为:15.【题目点拨】本题主要考察了勾股定理以及轴对称图形的性质,根据题意得出△ABC是等腰直角三角形是解题的关键.16、【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出△CAD是直角三角形,分别求出△ABC和△CAD的面积,即可得出答案.【题目详解】连结AC,在△ABC中,∵∠B=90°,AB=4m,BC=3m,∴AC==5(m),S△ABC=×3×4=6(m2),在△ACD中,∵AD=13m,AC=5m,CD=12m,∴AD2=AC2+CD2,∴△ACD是直角三角形,∴S△ACD=×5×12=30(m2).∴四边形ABCD的面积=S△ABC+S△ACD=6+30=36(m2)故答案为:.【题目点拨】本题考查了勾股定理,勾股定理的逆定理的应用,解此题的关键是能求出△ABC和△CAD的面积,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形.17、【分析】根据轴对称判断出点A关于x轴对称后的位置,此时横坐标不变,纵坐标互为相反数,然后再向左平移1个单位长度便可得到第一次变换后的点A的坐标;按照同样的方式可以找到第二次变换后的点A的坐标;然后再通过比较横纵坐标的数值,可以发现点A在每一次变换后的规律,即可求出经过2019次变换后的点A的坐标.【题目详解】点A原来的位置(0,1)第一次变换:,此时A坐标为;第二次变换:,此时A坐标为第三次变换:,此时A坐标为……第n次变换:点A坐标为所以第2019次变换后的点A的坐标为.故答案为:;;【题目点拨】本题考查的知识点是轴对称及平移的相关知识,平面直角坐标系中四个象限的点的横、纵坐标的符号是解题中的易错点,必须特别注意.18、1.【分析】根据勾股定理求出AC,根据三角形的外角的性质得到∠B=∠CAB,根据等腰三角形的性质求出BC,计算即可.【题目详解】解:∵∠D=90°,CD=6,AD=8,∴AC===10,∵∠ACD=2∠B,∠ACD=∠B+∠CAB,∴∠B=∠CAB,∴BC=AC=10,∴BD=BC+CD=1,故答案:1.【题目点拨】本题考查勾股定理、三角形的外角的性质,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.三、解答题(共66分)19、详见解析【分析】根据题意首先延长BD至F,使DF=BC,连接EF,得出△BEF为等边三角形,进而求出△ECB≌△EDF,从而得出EC=DE.【题目详解】解:证明:延长至,使,连接,如图所示,为等边三角形,,为等边三角形,,,,.【题目点拨】本题主要考查等边三角形的性质与判定以及全等三角形的判定等知识,解决问题的关键是学会添加常用辅助线,构造全等三角形解决问题.20、(1)11;(2)【分析】(1)原式利用完全平方公式展开,合并即可得到答案;(2)原式利用多项式除以单项式法则计算即可得到结果.【题目详解】(1)(2)原式【题目点拨】本题主要考查了二次根式的混合运算,正确化简二次根式是解题的关键.21、证明见解析.【分析】连接AD,利用SSS判定△ABD≌△DCA,根据全等三角形的对应角相等即证.【题目详解】连结AD在△BAD和△CDA中∴△BAD≌△CDA(SSS)∴∠B=∠C(全等三角形对应角相等).【题目点拨】本题考查三角形全等的判定方法和三角形全等的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.22、(1)本次统计成绩的总次数是20次,;(2)126°;(3)见解析.【分析】(1)用D等级的次数除以D等级所占百分比即得本次统计成绩的总次数;用总次数减去其它三个等级的次数可得B等级的次数,然后用B等级的次数除以总次数即得m的值;(2)用C等级的次数除以总次数再乘以360°即得结果;(3)由(1)题知B等级的次数即可补全条形统计图.【题目详解】解:(1)本次成绩的总次数=3÷15%=20次,B等级的次数是:,8÷20=40%,所以m=40;(2),所以扇形统计图中(合格)所对应圆心角的度数是126°;(3)补全条形统计图如图所示.【题目点拨】本题考查了条形统计图和扇形统计图的相关知识,属于基本题型,难度不大,熟练掌握条形统计图和扇形统计图的基本知识是解题关键.23、(1)25%,图形见解析;(2)5.3,5,5;(3)540名【分析】(1)用1减去其他人数所占的百分比即可得到a的值,再计算出样本总数,用样本总数×a的值即可得出“引体向上达6个”的人数;(2)根据平均数、众数与中位数的定义求解即可;(3)先求出样本中得满分的学生所占的百分比,再乘以1200即可.【题目详解】(1)由题意可得,,样本总数为:,做6个的学生数是,条形统计图补充如下:(2)由补全的条形图可知,样本数据的平均数,∵引体向上5个的学生有60人,人数最多,∴众数是5,∵共200名同学,排序后第100名与第101名同学的成绩都是5个,∴中位数为;(3)该区体育中考中选报引体向上的男生能获得满分的有:(名),即该区体育中考中选报引体向上的男生能获得满分的有540名.【题目点拨】本题主要考查了众数,用样本估计总体,扇形统计图,条形统计图,中位数,平均数,掌握众数,用样本估计总体,扇形统计图,条形统计图,中位数,平均数是解题的关键.24、见解析【分析】直接利用中心对称图形的性质分析即可得解.【题目详解】根据题意,如图所示:【题目点拨】此题主要考查对中心图形的理解,熟练掌握,即可解题.25、(1)EF=FC,EF⊥FC;(2)EF=FC,EF⊥FC,证明见解析;(3)EF=FC,EF⊥FC,证明见解析;

【分析】(1)根据已知得出△EFC是等腰直角三角形即可.

(2)延长线段CF到M,使FM=CF,连接DM、ME、EC,利用SAS证△BFC≌△DFM,进而可以证明△MDE≌△CAE,即可得证;

(3)延长线段CF到M,使FM=CF,连接DM、ME、EC,利用SAS证△BFC≌△DFM,进而可以证明△MDE≌△CAE,即可得证;.【题目详解】解:(1)∵与均为等腰直角三角形,∴,∴BE=EC∵为线段的中点,;故答案为:EF=FC,EF⊥FC

(2)存在EF=FC,E

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论