2024届江苏省泰州市姜堰区张甸初级中学八上数学期末考试模拟试题含解析_第1页
2024届江苏省泰州市姜堰区张甸初级中学八上数学期末考试模拟试题含解析_第2页
2024届江苏省泰州市姜堰区张甸初级中学八上数学期末考试模拟试题含解析_第3页
2024届江苏省泰州市姜堰区张甸初级中学八上数学期末考试模拟试题含解析_第4页
2024届江苏省泰州市姜堰区张甸初级中学八上数学期末考试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省泰州市姜堰区张甸初级中学八上数学期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列等式变形中,不正确的是()A.若x=y,则x+5=y+5 B.若,则x=yC.若-3x=-3y,则x=y D.若m2x=m2y,则x=y2.式子在实数范围内有意义,则x的取值范围是()A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣23.若的结果中不含项,则的值为()A.2 B.-4 C.0 D.44.已知y=m+3xm2−8是正比例函数,则A.8 B.4 C.±3 D.35.如图,它由两块相同的直角梯形拼成,由此可以验证的算式为()A. B.C. D.6.下列计算正确的是()A. B. C.3 D.7.已知多边形的每一个外角都是72°,则该多边形的内角和是()A.700° B.720° C.540° D.1080°8.关于x的不等式(m+1)x>m+1的解集为x<1,那么m的取值范围是()A.m<﹣1B.m>﹣1C.m>0D.m<09.已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为()A.5 B.6 C.7 D.810.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙11.的平方根是()A.9 B.9或-9 C.3 D.3或-312.如果一个多边形的内角和是外角和的5倍,那么这个多边形的边数是()A.11 B.12 C.13 D.14二、填空题(每题4分,共24分)13.若等腰三角形的一个角为70゜,则其顶角的度数为_____.14.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是________(添加一个即可)15.某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用时间相等,那么他的步行速度为_____千米/小时.16.如图,的周长为32,且于,的周长为24,那么的长为______.17.二次根式中字母的取值范围是________.18.在平面直角坐标系中,把直线y=-2x+3沿y轴向上平移两个单位后,得到的直线的函数关系式为_____.三、解答题(共78分)19.(8分)已知,,求的值.20.(8分)如图,在平面直角坐标系xOy中,A(-1,5),B(﹣1,0),C(﹣4,3).(1)在图中画出△ABC关于y轴对称的图形△A1B1C1;(其中A1、B1、C1分别是A、B、C的对应点,不写画法.)(2)写出点A1、B1、C1的坐标;(3)求出△A1B1C1的面积.21.(8分)先化简,再求值:(2x+y)(2x﹣y)﹣(x2y+xy2﹣y3)÷y,其中x=﹣,y=.22.(10分)已知△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB于E点.(1)求∠EDA的度数;(2)AB=10,AC=8,DE=3,求S△ABC.23.(10分)(1)计算:(x-y)(y-x)2[(x-y)n]2;(2)解不等式:(1-3y)2+(2y-1)2>13(y+1)(y-1)24.(10分)在△ABC中,∠BAC=120°,AD平分∠BAC,且AD=AB,若∠EDF=60°,其两边分别交边AB,AC于点E,F.(1)求证:△ABD是等边三角形;(2)求证:BE=AF.25.(12分)如图,在中,于点E,BC的垂直平分线分别交AB、BE于点D、G,垂足为H,,CD交BE于点F求证:≌若,求证:平分.26.在日历上,我们可以发现其中某些数满足一定的规律,如图是2020年1月份的日历.如图所选择的两组四个数,分别将每组数中相对的两数相乘,再相减,例如:9×11﹣3×17=,12×14﹣6×20=,不难发现,结果都是.(1)请将上面三个空补充完整;(2)请你利用整式的运算对以上规律进行证明.

参考答案一、选择题(每题4分,共48分)1、D【分析】根据等式的性质逐项排查即可.【题目详解】解:A.若x=y,则x+5=y+5,符合题意;B.若,则x=y,符合题意;C.若-3x=-3y,则x=y,符合题意;D.若m2x=m2y,当m=0,x=y不一定成立,不符合题意.故选:D.【题目点拨】本题考查了等式的性质,给等式左右两边同加(减)一个数或式,等式仍然成立;给等式左右两边同乘(除)一个不为零的数或式,等式仍然成立.2、B【分析】根据二次根式有意义的条件可得,再解不等式即可.【题目详解】解:由题意得:,解得:,

故选:B.【题目点拨】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.3、D【分析】由的结果中不含项,可知,结果中的项系数为0,进而即可求出答案.【题目详解】∵==,又∵的结果中不含项,∴1-k=0,解得:k=1.故选D.【题目点拨】本题主要考查多项式与多项式的乘法法则,利用法则求出结果,是解题的关键.4、D【解题分析】直接利用正比例函数的定义分析得出即可.【题目详解】∵y=(m+2)xm2﹣8是正比例函数,∴m2﹣8=2且m+2≠0,解得m=2.故选:D.【题目点拨】考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为2.5、A【分析】根据图中边的关系,可求出两图的面积,而两图面积相等,从而推导出了平方差的公式.【题目详解】如图,拼成的等腰梯形如下:上图阴影的面积s=a2−b2,下图等腰梯形的面积s=2(a+b)(a−b)÷2=(a+b)(a−b),两面积相等所以等式成立a2−b2=(a+b)(a−b).这是平方差公式.故选:A.【题目点拨】本题考查了平方差公式的几何背景,解决本题的关键是求出两图的面积,而两图面积相等,从而推导出了平方差的公式.6、D【分析】先对各选项进行计算,再判断.【题目详解】A选项:不能直接相加,故错误;B选项:,故错误;C选项:3,故错误;D选项:,故正确;故选:D.【题目点拨】考查立方根、平方根和算术平方根的问题,关键是根据立方根、平方根和算术平方根的定义分析.7、C【分析】由题意可知外角和是360°,除以一个外角度数即为多边形的边数,再根据多边形的内角和公式可求得该多边形的内角和.【题目详解】解:∵多边形的每一个外角都是72°,∴多边形的边数为:5,∴该多边形的内角和为:(5﹣2)×180°=540°.故选:C.【题目点拨】本题考查多边形的内外角和,用到的知识点为:多边形的边数与外角的个数的关系;n边形的内角和公式为(n-2)×180°.8、A【解题分析】本题是关于x的不等式,不等式两边同时除以(m+1)即可求出不等式的解集,不等号发生改变,说明m+1<0,即可求出m的取值范围.【题目详解】∵不等式(m+1)x>m+1的解集为x<1,∴m+1<0,∴m<−1,故选:A.【题目点拨】考查解一元一次不等式,熟练掌握不等式的3个基本性质是解题的关键.9、A【题目详解】试题分析:根据角平分线的性质可得:∠OBD=∠OBC,∠OCB=∠OCE,根据平行线的性质可得:∠OBC=∠DOB,∠OCB=∠COE,所以∠OBD=∠DOB,∠OCE=∠COE,则BD=DO,CE=OE,即DE=DO+OE=BD+CE=5.故选A【题目点拨】考点:等腰三角形的性质10、B【解题分析】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.详解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选B.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.11、D【分析】根据算术平方根的定义和平方根的定义计算即可.【题目详解】解:∵=9∴的平方根为3或-3故选D.【题目点拨】此题考查的是算术平方根和平方根的计算,掌握算术平方根的定义和平方根的定义是解决此题的关键.12、B【分析】设这个多边形的边数为n,根据多边形的内角和公式和多边形的外角和都等于360°,列出方程即可求出结论.【题目详解】解:设这个多边形的边数为n由题意可得180(n-2)=360×5解得:n=12故选B.【题目点拨】此题考查的是根据多边形的内角和和外角和的关系,求边数,掌握多边形的内角和公式和多边形的外角和都等于360°是解决此题的关键.二、填空题(每题4分,共24分)13、70°或40°【分析】分顶角是70°和底角是70°两种情况求解即可.【题目详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为:70°或40°.【题目点拨】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.14、∠D=∠B【分析】要判定△ADF≌△CBE,已经有AD=BC,DF=BE,还缺少第三组对应边相等或这两边组成的夹角相等,根据全等三角形的判定方法求解即可.【题目详解】∵AD=BC,DF=BE,∴只要添加∠D=∠B,根据“SAS”即可证明△ADF≌△CBE.故答案为∠D=∠B.【题目点拨】本题重点考查的是全等三角形的判定方法,熟练掌握全等三角形的知识是解答的关键,应该多加练习.三角形全等的判定定理有:边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS).15、4【分析】先设他骑自行车的速度每小时走x千米,根据他步行12千米所用的时间与骑自行车36千米所用的时间相等,列出方程,求出方程的解即可求出骑自行车的速度,再根据步行速度=骑自行车速度-8可得出结论.【题目详解】设他骑自行车的速度每小时走x千米,根据题意得:=解得:x=12,经检验:x=12是原分式方程的解.则步行的速度=12-8=4.答:他步行的速度是4千米/小时.故答案为4.【题目点拨】本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.16、1【解题分析】试题分析:因为AB=AC,AD⊥BC,所以BD=CD,因为△ABC的周长为32,所以AC+CD=32=16,又因为△ACD的周长为24,所以AD="24"-(AC+CD)="24-16="1.考点:等腰三角形的性质.17、【分析】根据二次根式的定义列不等式求解即可.【题目详解】解析:由题意得:,解得:.故答案为:.【题目点拨】本题考查了二次根式的定义,形如的式子叫二次根式,熟练掌握二次根式成立的条件是解答本题的关键.18、y=-2x+1.【分析】根据平移法则上加下减可得出平移后的解析式.【题目详解】解:由题意得:平移后的解析式为:y=-2x+3+2=-2x+1.

故答案为y=-2x+1.【题目点拨】本题考查一次函数图形的平移变换和函数解析式之间的关系,解题关键是在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.三、解答题(共78分)19、72【分析】根据同底数幂相乘的逆运算,以及幂的乘方运算,即可得到答案.【题目详解】解:∵,,∴;【题目点拨】本题考查了幂的乘方,以及同底数幂相乘的逆运算,解题的关键是掌握运算法则进行计算.20、(1)见解析;(2)A1(1,5),B1(1,0),C1(4,3);(3)【分析】(1)根据网格结构找出点A、B、C的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据平面直角坐标系写出点的坐标即可;(3)利用三角形的面积公式列式进行计算即可求解.【题目详解】解:(1)如图所示,△A1B1C1即为所求作的三角形;(2)点A1、B1、C1的坐标分别为:A1(1,5),B1(1,0),C1(4,3);(3)S=×5×3=.【题目点拨】本题考查了利用轴对称变换作图,熟悉网格结构并找出对应点的位置是解题的关键.21、3x2﹣xy,【分析】直接利用整式的混合运算法则化简,再把已知数据代入得出答案.【题目详解】原式当时,原式.【题目点拨】本题考查了整式的化简求值,利用多项式乘以多项式、多项式除以单项式、及整数的加减法则正确化简是解题关键.22、(1)60°;(2)1.【解题分析】(1)先求出∠BAC=60°,再用AD是△ABC的角平分线求出∠BAD,再根据垂直,即可求解;(2)过D作DF⊥AC于F,三角形ABC的面积为三角形ABD和三角形ACD的和即可求解.【题目详解】解:(1)∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°,∵AD是△ABC的角平分线,∴∠BAD=∠BAC=×60°=30°,∵DE⊥AB,∴∠DEA=90°,∴∠EDA=180°﹣∠BAD﹣∠DEA=180°﹣30°﹣90°=60°;(2)如图,过D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DF=DE=3,又∵AB=10,AC=8,∴S△ABC=×AB×DE+×AC×DF=×10×3+×8×3=1.【题目点拨】本题考查的是三角形,熟练掌握三角形的性质是解题的关键.23、(1)(x-y)2n+3;(2)y<1.1.【分析】(1)先把乘方化为同底数幂,再根据同底数幂的乘法法则求解,即可;(2)先利用完全平方公式和平方差公式,进行化简,再解一元一次不等式,即可.【题目详解】(1)(x-y)(y-x)2[(x-y)n]2=(x-y)(x-y)2(x-y)2n=(x-y)2n+3;(2)1-6y+9y2+4y2-4y+1>13y2-13,-10y>-11,y<1.1.【题目点拨】本题主要考查整数的混合运算以及解不等式,掌握同底数幂的乘法法则以及乘法公式,是解题的关键.24、(1)证明见解析;(2)证明见解析.【解题分析】(1)连接BD,根据角平分线的性质可得∠BAD=60°,又因为AD=AB,即可证△ABD是等边三角形;(2)由△ABD是等边三角形,得出BD=AD,∠ABD=∠ADB=60°,证出∠BDE=∠ADF,由ASA证明△BDE≌△ADF,得出BE=AF.【题目详解】(1)证明:连接BD,∵∠BAC=120°,AD平分∠BAC∴∠BAD=∠DAC=×12

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论