版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南临颍新时代实验学校八年级数学第一学期期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如果代数式的值为3,那么代数式的值等于()A.11 B.9 C.13 D.72.如果是一个完全平方式,那么k的值是()A.3 B.±6 C.6 D.±33.的值是()A.16 B.2 C. D.4.如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A.15 B.18 C.21 D.245.如图,中,与的平分线交于点,过点作交于点,交于点,那么下列结论:①是等腰三角形;②;③若,;④.其中正确的有()A.个 B.个 C.个 D.个6.如图,在中,点是延长线上一点,,,则等于().A.60° B.80° C.70° D.50°7.已知:如图,AB=AD,∠1=∠2,以下条件中,不能推出△ABC≌△ADE的是()A.AE=AC B.∠B=∠D C.BC=DE D.∠C=∠E8.某区10名学生参加市级汉字听写大赛,他们得分情况如下表:人数3421分数8029095那么这10名学生所得分数的平均数和众数分别是()A.2和1.5 B.2.5和2 C.2和2 D.2.5和809.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.8010.直角三角形的两条边长分别是5和12,它的斜边长为()A.13 B. C.13或12 D.13或二、填空题(每小题3分,共24分)11.如图,将长方形ABCD的边AD沿折痕AE折叠,使点D落在BC上的F处,若AB=5,AD=13,则EF=_____.12.如图所示,在中,,,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则的度数为(________)13.如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=105°,则∠ADC=°.14.如图,在梯形ABCD中,AD∥BC,若AB=AD=DC=3,∠A=120°,则梯形ABCD的周长为_____.15.如图,在中,,,将其折叠,使点落在边上处,折痕为,则_______________.16.已知等腰三角形一腰上的高与另一腰的夹角为50°,则等腰三角形的顶角度数为_________.17.如图,在△ABC中,∠A=70°,点O到AB,BC,AC的距离相等,连接BO,CO,则∠BOC=________.18.李老师组织本班学生进行跳绳测试,根据学生测试的成绩,列出了如下表格,则成绩为“良”的频率为______.成绩优良及格不及格频数1022153三、解答题(共66分)19.(10分)解不等式组:;并将解集在数轴上表示出来.20.(6分)计算:(1);(2)21.(6分)如图1.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(2,1),C(5,1).(1)直接写出点B关于x轴对称的对称点B1的坐标为,直接写出点B关于y轴对称的对称点B2的坐标为,直接写出△AB1B2的面积为;(2)在y轴上找一点P使PA+PB1最小,则点P坐标为;(3)图2是10×10的正方形网格,顶点在这些小正方形顶点的三角形为格点三角形,①在图2中,画一个格点三角形△DEF,使DE=10,EF=5,DF=3;②请直接写出在图2中满足①中条件的格点三角形的个数.22.(8分)如图,已知两条射线OM∥CN,动线段AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF.(1)请在图中找出与∠AOC相等的角,并说明理由;(2)判断线段AB与OC的位置关系是什么?并说明理由;(3)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值.23.(8分)如图(单位:m),某市有一块长为(3a+b)m、宽为(2a+b)m的长方形地,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=6,b=1时,绿化的面积.24.(8分)如图1,某容器外形可看作由三个长方体组成,其中的底面积分别为的容积是容器容积的(容器各面的厚度忽略不计).现以速度(单位:)均匀地向容器注水,直至注满为止.图2是注水全过程中容器的水面高度(单位:)与注水时间(单位:)的函数图象.在注水过程中,注满所用时间为______________,再注满又用了______________;注满整个容器所需时间为_____________;容器的总高度为____________.25.(10分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)的顶点,的坐标分别为,.(1)请在图中画出平面直角坐标系;(2)请画出关于轴对称的;(3)线段的长为_______.26.(10分)某学校计划选购、两种图书.已知种图书每本价格是种图书每本价格的2.5倍,用1200元单独购买种图书比用1500元单独购买种图书要少25本.(1)、两种图书每本价格分别为多少元?(2)如果该学校计划购买种图书的本数比购买种图书本数的2倍多8本,且用于购买、两种图书的总经费不超过1164元,那么该学校最多可以购买多少本种图书?
参考答案一、选择题(每小题3分,共30分)1、B【分析】先由已知可得2x-y=2,然后将写成2(2x-y)+5,最后将2x-y=2代入计算即可.【题目详解】解:∵代数式2x-y+1的值为3∴2x-y=2∴=2(2x-y)+5=2×2+5=1.故答案为B.【题目点拨】本题主要考查了代数式求值,根据已知求出2x-y的值是解答本题的关键.2、B【分析】根据完全平方式得出k=±1×1×3,求出即可.【题目详解】∵x1−kxy+9y1是一个完全平方式,∴x1−kxy+9y1=x1±1•x•3y+(3y)1,即k=±6,故选:B.【题目点拨】本题考查了对完全平方式的应用,注意:完全平方式有两个:a1+1ab+b1和a1−1ab+b1.3、B【分析】根据算术平方根的定义求值即可.【题目详解】=1.故选:B.【题目点拨】本题考查算术平方根,属于基础题型.4、A【分析】此题涉及的知识点是平行四边形的性质.根据平行四边形的对边相等和对角线互相平分可得,OB=OD,又因为E点是CD的中点,可得OE是△BCD的中位线,可得OE=BC,所以易求△DOE的周长.【题目详解】解:∵▱ABCD的周长为32,∴2(BC+CD)=32,则BC+CD=1.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=2.又∵点E是CD的中点,DE=CD,∴OE是△BCD的中位线,∴OE=BC,∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=2+9=3,即△DOE的周长为3.故选A【题目点拨】此题重点考察学生对于平行四边形的性质的理解,三角形的中位线,平行四边形的对角对边性质是解题的关键.5、B【分析】根据角平分线的定义和平行线的性质可得∠DBF=∠DFB,∠ECF=∠EFC,然后利用等角对等边即可得出DB=DF,EF=EC,从而判断①和②;利用三角形的内角和定理即可求出∠ABC+∠ACB,然后利用角平分线的定义和三角形的内角和定理即可求出∠BFC,从而判断③;然后根据∠ABC不一定等于∠ACB即可判断④.【题目详解】解:∵与的平分线交于点,∴∠DBF=∠FBC,∠ECF=∠FCB∵∴∠DFB=∠FBC,∠EFC=∠FCB∴∠DBF=∠DFB,∠ECF=∠EFC∴DB=DF,EF=EC,即是等腰三角形,故①正确;∴DE=DF+EF=BD+CE,故②正确;∵∠A=50°∴∠ABC+∠ACB=180°-∠A=130°∴∠FBC+∠FCB=(∠ABC+∠ACB)=65°∴∠BFC=180°-(∠FBC+∠FCB)=115°,故③正确;∵∠ABC不一定等于∠ACB∴∠FBC不一定等于∠FCB∴BF不一定等于CF,故④错误.正确的有①②③,共3个故选B.【题目点拨】此题考查的是角平分线的定义、平行线的性质、等腰三角形的判定和三角形的内角和定理,掌握角平分线、平行线和等腰三角形三者之间的关系是解决此题的关键.6、D【分析】利用外角的性质解答即可.【题目详解】∵∠ACD=∠B+∠A,∴∠B=∠ACD-∠A=120°-70°=50°,故选:D.【题目点拨】本题考查外角的性质,属于基础题型.7、C【解题分析】根据∠1=∠2可利用等式的性质得到∠BAC=∠DAE,然后再根据所给的条件利用全等三角形的判定定理进行分析即可.【题目详解】解:∵∠1=∠2,
∴∠1+∠DAC=∠2+∠DAC,
∴∠BAC=∠DAE,
A、添加AE=AC,可利用SAS定理判定△ABC≌△ADE,故此选项不合题意;
B、添加∠B=∠D,可利用SAS定理判定△ABC≌△ADE,故此选项不合题意;
C、添加BC=DE,不能判定△ABC≌△ADE,故此选项符合题意;
D、添加∠C=∠E,可利用AAS定理判定△ABC≌△ADE,故此选项不合题意;
故选C.【题目点拨】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8、B【分析】根据众数及平均数的定义,即可得出答案.【题目详解】解:这组数据中2出现的次数最多,故众数是2;
平均数=(80×3+2×4+90×2+93×1)=2.3.
故选:B.【题目点拨】本题考查了众数及平均数的知识,掌握各部分的概念是解题关键.9、C【解题分析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S阴影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故选C.考点:勾股定理.10、A【分析】直接利用勾股定理即可解出斜边的长.【题目详解】解:由题意得:斜边长=,故选:A.【题目点拨】本题主要考查勾股定理,掌握勾股定理的基本运用是解答本题的关键.二、填空题(每小题3分,共24分)11、【分析】由翻折的性质得到AF=AD=13,在Rt△ABF中利用勾股定理求出BF的长,进而求出CF的长,再根据勾股定理可求EC的长.【题目详解】解:∵四边形ABCD是长方形,∴∠B=90°,∵△AEF是由△ADE翻折,∴AD=AF=13,DE=EF,在Rt△ABF中,AF=13,AB=5,∴BF===12,∴CF=BC﹣BF=13﹣12=1.∵EF2=EC2+CF2,∴EF2=(5﹣EF)2+1,∴EF=,故答案为:.【题目点拨】本题考查勾股定理的综合应用、图形的翻折,解题的关键是熟练掌握勾股定理和翻折的性质.12、30【分析】利用等腰三角形的性质可得出ABC的度数,再根据垂直平分线定理得出AD=BD,,继而可得出答案.【题目详解】解:DE垂直平分AB故答案为:30.【题目点拨】本题考查的知识点是等腰三角形的性质以及垂直平分线的性质,掌握以上知识点是解此题的关键.13、50【解题分析】试题分析:由AC=AD=DB,可知∠B=∠BAD,∠ADC=∠C,设∠ADC=x,可得∠B=∠BAD=x,因此可根据三角形的外角,可由∠BAC=105°,求得∠DAC=105°-x,所以在△ADC中,可根据三角形的内角和可知∠ADC+∠C+∠DAC=180°,因此2x+105°-x=180°,解得:x=50°.考点:三角形的外角,三角形的内角和14、1【分析】首先过点A作AE∥CD,交BC于点E,由AB=AD=DC=2,∠A=120°,易证得四边形AECD是平行四边形,△ABE是等边三角形,继而求得答案.【题目详解】解:过点A作AE∥CD,交BC于点E,∵AD∥BC,∴四边形AECD是平行四边形,∠B=180°﹣∠BAD=180°﹣120°=60°,∴AE=CD,CE=AD=3,∵AB=DC,∴△ABE是等边三角形,∴BE=AB=3,∴BC=BE+CE=6,∴梯形ABCD的周长为:AB+BC+CD+AD=1.故答案为:1.【题目点拨】考核知识点:平行四边形性质.作辅助线是关键.15、【解题分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠BA′D=∠DCA'+∠A'DC,又折叠前后图形的形状和大小不变,∠BA'D=∠A=65°,易求∠C=90°-∠A=25°,从而求出∠A′DC的度数.【题目详解】∵Rt△ABC中,∠ABC=90°,∠A=65°,∴∠C=90°-65°=25°,∵将其折叠,使点A落在边CB上A′处,折痕为BD,则∠BA'D=∠A,∵∠BA'D是△A'CD的外角,∴∠A′DC=∠BA'D-∠C=65°-25°=40°.故答案:40°.【题目点拨】本题考查图形的折叠变化及三角形的外角性质.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.解答此题的关键是要明白图形折叠后与折叠前所对应的角相等.16、40°或140°【分析】根据题意,对等腰三角形分为锐角等腰三角形和钝角等腰三角形进行解答.【题目详解】解:①如图1,若该等腰三角形为锐角三角形,由题意可知:在△ABC中,AB=AC,BD为AC边上的高,且∠ABD=50°,∴∠A=90°-50°=40°,②如图2,若该等腰三角形为钝角三角形,由题意可知:在△ABC中,AB=AC,BD为AC边上的高,且∠ABD=50°,∴∠BAD=90°-50°=40°,∴∠BAC=180°-40°=140°,综上所述:等腰三角形的顶角度数为40°或140°,故答案为:40°或140°.【题目点拨】本题考查了等腰三角形的分类讨论问题,以及三角形高的做法,解题的关键是对等腰三角形进行分类,利用数形结合思想进行解答.17、1°【分析】根据角平分线性质推出O为△ABC三角平分线的交点,根据三角形内角和定理求出∠ABC+∠ACB,根据角平分线定义求出∠OBC+∠OCB,即可求出答案.【题目详解】:∵点O到AB、BC、AC的距离相等,∴OB平分∠ABC,OC平分∠ACB,∴,,∵∠A=70°,∴∠ABC+∠ACB=180°-70°=110°,∴,∴∠BOC=180°-(∠OBC+∠OCB)=1°;故答案为:1.【题目点拨】本题主要考查平分线的性质,三角形内角和定理的应用,能求出∠OBC+∠OCB的度数是解此题的关键.18、0.44【分析】用“良”的频数除以总数即可求解.【题目详解】根据题意得:成绩为“良”的频率为:故答案为:0.44【题目点拨】本题考查了频率,掌握一个数据出现的频率等于频数除以总数是关键.三、解答题(共66分)19、.数轴表示见解析【分析】先分别求出各不等式的解集,然后再确定其公共部分即为不等式组的解集,最后在数轴上表示出来即可.【题目详解】解:,由不等式①解得,,由不等式②解得,,所以,原不等式组的解集是.在数轴上表示如下:【题目点拨】本题考查了不等式组的解法,掌握解不等式和确定不等式组解集的方法是解答本题的关键.20、(1)1;(2)【分析】(1)根据整数指数幂的运算法则先化简各项,同时化简绝对值,再加减可得解;(2)先化简各二次根式,再进行计算.【题目详解】(1)原式(2)原式【题目点拨】本题考查了二次根式的混合运算,也考查了负指数幂和0次幂,熟练掌握计算法则是解题关键.21、(1)(2,﹣1),(﹣2,1),7;(2)(0,);(3)①见解析;②8【分析】(1)根据关于x轴、y轴对称的点的坐标特征即可得到结论;(2)根据轴对称的性质得到B3(﹣2,﹣1),求得直线AB3的解析式,求出直线AB3与y轴的交点即可得到结论;(3)①借助勾股定理确定三边长,发现最长的边为10×10的正方形网格的对角线,然后以对角线的两个顶点为圆心,分别以为半径画圆,交点即为所求的F点,以此画出图形即可;②在10×10的正方形网格中找出所以满足条件的三角形即可确定答案.【题目详解】解:(1)∵B(2,1),∴点B关于x轴对称的对称点B1的坐标为(2,﹣1),点B关于y轴对称的对称点B2的坐标为(﹣2,1),△AB1B2的面积=4×4﹣×2×3﹣×1×4﹣×2×4=7,(2)作点B1关于y轴的对称点B3,连接AB3交y轴于P,则此时PA+PB1最小,∵B1的坐标为(2,﹣1),∴B3(﹣2,﹣1),设直线的函数关系式为,将点代入解析式得解得∴;当时,∴点P坐标为(0,);(3)①如图2所示,△DEF即为所求;②如图2所示,满足①中条件的格点三角形的个数为8个.【题目点拨】本题主要考查轴对称变换,待定系数法和画三角形,掌握关于x,y轴对称的点的特点,待定系数法是解题的关键.22、(1)与相等的角是;(2),证明详见解析;(3)与的度数比不随着位置的变化而变化,【分析】(1)根据两直线平行,同旁内角互补可得、,再根据邻补角的定义求出即可得解;(2)根据两直线的同旁内角互补,两直线平行,即可证明;(3)根据两直线平行,内错角相等可得,再根据角平分线的定义可得,从而得到比值不变.【题目详解】(1)∴又与相等的角是;(2)理由是:即(3)与的度数比不随着位置的变化而变化平分,【题目点拨】本题考查了平行线的性质,掌握平行线的性质以及判定定理是解题的关键.23、(5a2+3ab)m2,198m2【分析】首先列出阴影部分的面积的表达式,再化简求值.【题目详解】解:绿化的面积为(3a+b)(2a+b)-(a+b)2=(5a2+3ab)m2当a=6,b=1时,绿化的面积为5a2+3ab=5×62+3×6×1=198(m2)【题目点拨】本题运用列代数式求值的知识点,关键是化简时要算准确.24、(1)10,8;(2)1;(3)1【分析】(1)根据函数图象可直接得出答案;(2)设容器A的高度为hAcm,注水速度为vcm3/s,根据题意和函数图象可列出一个含有hA及v的二元一次方程组,求出v后即可求出C的容积,进一步即可求出注满C的时间,从而可得答案;(3)根据B、C的容积可求出B、C的高度,进一步即可求出容器的高度.【题目详解】解:(1)根据函数图象可知,注满A所用时间为10s,再注满B又用了18-10=8(s);故答案为:10,8;(2)设容器A的高度为hAcm,注水速度为vcm3/s,根据题意和函数图象得:,解得:;设C的容积为ycm3,则有4y=10v+8v+y,将v=10代入计算得y=60,∴注满
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年日用杂品项目评估分析报告
- 2024年建筑高空作业安全技术规范协议
- 2024年度品牌战略合作伙伴协议
- 2024年烤面包机项目综合评估报告
- 2024年硬脂酸项目评价分析报告
- 2024年新型电动车租赁协议
- 2024年搬家与装卸货服务合同
- 2024年护理人员聘用合同
- 《告别母校》作文参考6篇
- 2024年房地产中介服务约
- 北京市海淀区2024-2025学年高三第一学期期中练习语文试卷含答案
- 刘润年度演讲2024
- 杭州会展业发展与对策研究文献综述
- 小学六年级英语上册《Unit 1 How can I get there》教案
- 完整版方法验证报告模板最终
- 电力管道资料表格(共30页)
- 大班科学活动教案《豆豆家族》含PPT课件
- 【精品试卷】部编人教版(统编)一年级上册语文第一单元测试卷含答案
- 金属有机化学ppt课件
- 数学说题稿(共4页)
- 门球协会章程
评论
0/150
提交评论