2022年江苏省扬州市江都区第二中学数学九年级第一学期期末经典试题含解析_第1页
2022年江苏省扬州市江都区第二中学数学九年级第一学期期末经典试题含解析_第2页
2022年江苏省扬州市江都区第二中学数学九年级第一学期期末经典试题含解析_第3页
2022年江苏省扬州市江都区第二中学数学九年级第一学期期末经典试题含解析_第4页
2022年江苏省扬州市江都区第二中学数学九年级第一学期期末经典试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,点G是△ABC的重心,下列结论中正确的个数有()①;②;③△EDG∽△CBG;④.A.1个 B.2个 C.3个 D.4个2.如图,AB与CD相交于点E,点F在线段BC上,且AC//EF//DB,若BE=5,BF=3,AE=BC,则的值为()A. B. C. D.3.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房建设力度年市政府共投资亿元人民币建设廉租房万平方米,预计到年底三年共累计投资亿元人民币建设廉租房,若在这两年内每年投资的增长率都为,可列方程()A. B.C. D.4.用配方法解方程x2+3=4x,配方后的方程变为()A.(x-2)2=7 B.(x+2)2=1C.(x-2)2=1 D.(x+2)2=25.三张背面完全相同的数字牌,它们的正面分别印有数字1,2,3,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a、b、c,则以a、b、c为边长能构成等腰三角形的概率是()A. B. C. D.6.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是()A. B. C. D.7.下列计算中正确的是()A. B. C. D.8.将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+39.“黄金分割”是一条举世公认的美学定律.例如在摄影中,人们常依据黄金分割进行构图,使画面整体和谐.目前,照相机和手机自带的九宫格就是黄金分割的简化版.要拍摄草坪上的小狗,按照黄金分割的原则,应该使小狗置于画面中的位置()A.① B.② C.③ D.④10.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有()A.1对 B.2对 C.3对 D.4对11.下列事件中是随机事件的是()A.校运会上立定跳远成绩为10米B.在只装有5个红球的袋中,摸出一个红球C.慈溪市明年五一节是晴天D.在标准大气压下,气温3°C时,冰熔化为水12.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次二、填空题(每题4分,共24分)13.如图,点P在函数y=的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为4,则k等于_____.14.在△ABC中,边BC、AC上的中线AD、BE相交于点G,AD=6,那么AG=____.15.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点E是AB边上一动点,过点E作DE⊥AB交AC边于点D,将∠A沿直线DE翻折,点A落在线段AB上的F处,连接FC,当△BCF为等腰三角形时,AE的长为_____.16.在一个不透明的盒子中装有6个白球,x个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到白球的概率为,则x=_______.17.如图,一次函数的图象交x轴于点B,交y轴于点A,交反比例函数的图象于点,若,且的面积为2,则k的值为________18.如图,点、、、在射线上,点、、、在射线上,且,.若和的面积分别为和,则图中三个阴影三角形面积之和为___________.三、解答题(共78分)19.(8分)如图,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.已知:AB,CD.(1)求作此残片所在的圆(不写作法,保留作图痕迹)(2)求(1)中所作圆的半径20.(8分)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上一点O为圆心,OB为半径作⊙O,交AC于点E,交AB于点D,且∠BEC=∠BDE.(1)求证:AC是⊙O的切线;(2)连接OC交BE于点F,若,求的值.21.(8分)化简:,并从中取一个合适的整数代入求值.22.(10分)如图,已知,以为直径作半圆,半径绕点顺时针旋转得到,点的对应点为,当点与点重合时停止.连接并延长到点,使得,过点作于点,连接,.(1)______;(2)如图,当点与点重合时,判断的形状,并说明理由;(3)如图,当时,求的长;(4)如图,若点是线段上一点,连接,当与半圆相切时,直接写出直线与的位置关系.23.(10分)如图,一艘渔船位于小岛M的北偏东45°方向、距离小岛180海里的A处,渔船从A处沿正南方向航行一段距离后,到达位于小岛南偏东60°方向的B处.(1)求渔船从A到B的航行过程中与小岛M之间的最小距离(结果用根号表示):(2)若渔船以20海里/小时的速度从B沿BM方向行驶,求渔船从B到达小岛M的航行时间(结果精确到0.1小时).(参考数据:)24.(10分)如图,在直角△ABC中,∠C=90°,AB=5,作∠ABC的平分线交AC于点D,在AB上取点O,以点O为圆心经过B、D两点画圆分别与AB、BC相交于点E、F(异于点B).(1)求证:AC是⊙O的切线;(2)若点E恰好是AO的中点,求的长;(3)若CF的长为,①求⊙O的半径长;②点F关于BD轴对称后得到点F′,求△BFF′与△DEF′的面积之比.25.(12分)在Rt△ABC中,∠C=90°,a=6,b=.解这个三角形.26.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?

参考答案一、选择题(每题4分,共48分)1、D【分析】根据三角形的重心的概念和性质得到AE,CD是△ABC的中线,根据三角形中位线定理得到DE∥BC,DE=BC,根据相似三角形的性质定理判断即可.【详解】解:∵点G是△ABC的重心,∴AE,CD是△ABC的中线,∴DE∥BC,DE=BC,∴△DGE∽△BGC,∴=,①正确;,②正确;△EDG∽△CBG,③正确;,④正确,故选D.【点睛】本题考查三角形的重心的概念和性质,相似三角形的判定和性质,三角形中位线定理,掌握三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍是解题关键.2、A【分析】根据平行线分线段成比例定理得可求出BC的长,从而可得CF的长,再根据平行线分线段成比例定理得,求解即可得.【详解】又,解得又故选:A.【点睛】本题考查了平行线分线段成比例定理,根据定理求出BC的长是解题关键.3、B【分析】根据1013年市政府共投资1亿元人民币建设了廉租房,预计1015年底三年共累计投资亿元人民币建设廉租房,由每年投资的年平均增长率为x可得出1014年、1015年的投资额,由三年共投资9.5亿元即可列出方程.【详解】解:这两年内每年投资的增长率都为,则1014年投资为1(1+x)亿元,1015年投资为1(1+x)1亿元,由题意则有,故选B.【点睛】本题考查了一元二次方程的应用——增长率问题,正确理解题意是解题的关键.若原来的数量为a,平均每次增长或降低的百分率为x,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a×(1±x)(1±x)=a(1±x)1.增长用“+”,下降用“-”.4、C【分析】将方程常数项移到右边,未知项移到左边,然后两边都加上4,左边化为完全平方式,右边合并即可得到结果.【详解】x2+3=4x,整理得:x2-4x=-3,配方得:x2-4x+4=4-3,即(x-2)2=1.故选C.【点睛】此题考查了解一元二次方程-配方法,利用此方法解方程时,首先将方程常数项移到右边,未知项移到左边,二次项系数化为1,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,开方即可求出解.5、C【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与构成等腰三角形的情况,再利用概率公式即可求得答案.【详解】画树状图得:

∵共有27种等可能的结果,构成等腰三角形的有15种情况,

∴以a、b、c为边长正好构成等腰三角形的概率是:.

故选:C.【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.6、A【解析】根据黄金比的定义得:,得.故选A.7、D【分析】直接利用二次根式混合运算法则分别判断得出答案.【详解】A、无法计算,故此选项不合题意;B、,故此选项不合题意;C、,故此选项不合题意;D、,正确.故选D.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.8、A【解析】分析:直接利用二次函数图象与几何变换的性质分别平移得出答案.详解:将抛物线y=-5x2+1向左平移1个单位长度,得到y=-5(x+1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=-5(x+1)2-1.故选A.点睛:此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.9、B【解析】黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值约为0.618,观察图中的位置可知应该使小狗置于画面中②的位置,故选B.10、C【解析】∵∠ACB=90°,CD⊥AB,∴△ABC∽△ACD,△ACD∽CBD,△ABC∽CBD,所以有三对相似三角形.故选C.11、C【分析】根据随机事件的定义,就是可能发生也可能不发生的事件进行判断即可.【详解】解:A.“校运会上立定跳远成绩为10米”是不可能事件,因此选项A不符合题意;B.“在只装有5个红球的袋中,摸出一个红球”是必然事件,因此选项B不符合题意;C.“慈溪市明年五一节是晴天”可能发生,也可能不发生,是随机事件,因此选项C符合题意;D.“在标准大气压下,气温3°C时,冰熔化为水”是必然事件,因此选项D不符合题意;故选:C.【点睛】本题考查了随机事件、必然事件、不可能事件的定义,理解随机事件的定义是解题的关键.12、A【解析】试题分析:不可能事件发生的概率为0,故A正确;随机事件发生的概率为在0到1之间,故B错误;概率很小的事件也可能发生,故C错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D错误;故选A.考点:随机事件.二、填空题(每题4分,共24分)13、-1【解析】由反比例函数系数k的几何意义结合△APB的面积为4即可得出k=±1,再根据反比例函数在第二象限有图象即可得出k=﹣1,此题得解.【详解】∵点P在反比例函数y=的图象上,PA⊥x轴于点A,PB⊥y轴于点B,∴S△APB=|k|=4,∴k=±1.又∵反比例函数在第二象限有图象,∴k=﹣1.故答案为﹣1.【点睛】本题考查了反比例函数系数k的几何意义,熟练掌握“在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|是解题的关键.14、4【分析】由三角形的重心的概念和性质,即可得到答案.【详解】解:如图,∵AD,BE是△ABC的中线,且交点为点G,∴点G是△ABC的重心,∴;故答案为:4.【点睛】此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.15、2或或.【分析】由勾股定理求出AB,设AE=x,则EF=x,BF=1﹣2x;分三种情况讨论:①当BF=BC时,列出方程,解方程即可;②当BF=CF时,F在BC的垂直平分线上,得出AF=BF,列出方程,解方程即可;③当CF=BC时,作CG⊥AB于G,则BG=FGBF,由射影定理求出BG,再解方程即可.【详解】由翻折变换的性质得:AE=EF.∵∠ACB=90°,AC=8,BC=6,∴AB1.设AE=x,则EF=x,BF=1﹣2x.分三种情况讨论:①当BF=BC时,1﹣2x=6,解得:x=2,∴AE=2;②当BF=CF时.∵BF=CF,∴∠B=∠FCB.∵∠A+∠B=90°,∠FCA+∠FCB=90°,∴∠A=∠FCA,∴AF=FC.∵BF=FC,∴AF=BF,∴x+x=1﹣2x,解得:x,∴AE;③当CF=BC时,作CG⊥AB于G,如图所示:则BG=FGBF.根据射影定理得:BC2=BG•AB,∴BG,即(1﹣2x),解得:x,∴AE;综上所述:当△BCF为等腰三角形时,AE的长为:2或或.故答案为:2或或.【点睛】本题考查了翻折变换的性质、勾股定理、射影定理、等腰三角形的性质;本题有一定难度,需要进行分类讨论.16、1【分析】直接以概率求法得出关于x的等式进而得出答案.【详解】解:由题意得:,解得,故答案为:1.【点睛】本题考查了概率的意义,正确把握概率的求解公式是解题的关键.17、【解析】过点C作CD⊥x轴于点D,根据AAS可证明△AOB≌△CDB,从而证得S△AOC=S△OCD,最后再利用k的几何意义即可得到答案.【详解】解:过点C作CD⊥x轴于点D,如图所示,∵在△AOB与△CDB中,,∴△AOB≌△CDB(AAS),∴S△AOB=S△CDB,∴S△AOC=S△OCD,∵S△AOC=2,∴S△OCD=2,∴,∴k=±4,又∵反比例函数图象在第一象限,k>0,∴k=4.【点睛】本题考查全等三角形的判定与性质,反比例函数中比例系数k的几何意义,熟练掌握判定定理及k的几何意义是解题的关键.18、【分析】由已知可证,从而得到,利用和等高,可求出,同理求出另外两个三角形的面积,则阴影部分的面积可求.【详解】∵,.∴∴∵和的面积分别为和∴∵和等高∴∴同理可得∴阴影部分的面积为故答案为42【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定方法及所求三角形与已知三角形之间的关系是解题的关键.三、解答题(共78分)19、(1)图见解析;(2)1.【分析】(1)由垂径定理知,垂直于弦的直径是弦的中垂线,故作AC,BC的中垂线交于点O,则点O是弧ACB所在圆的圆心;(2)在Rt△OAD中,由勾股定理可求得半径OA的长.【详解】解:(1)作弦AC的垂直平分线与弦AB的垂直平分线交于O点,以O为圆心OA长为半径作圆O就是此残片所在的圆,如图.(2)连接OA,设OA=x,AD=12cm,OD=(x-8)cm,则根据勾股定理列方程:x2=122+(x-8)2,解得:x=1.答:圆的半径为1cm.20、(1)证明见解析;(2)【解析】试题分析:(1)连接OE,证得OE⊥AC即可确定AC是切线;

(2)根据OE∥BC,分别得到△AOE∽△ACB和△OEF∽△CBF,利用相似三角形对应边的比相等找到中间比即可求解.试题解析:解:(1)连接OE.∵OB=OE,∴∠OBE=∠OEB.∵∠ACB=90°,∴∠CBE+∠BEC=90°.∵BD为⊙O的直径,∴∠BED=90°,∴∠DBE+∠BDE=90°,∴∠CBE=∠DBE,∴∠CBE=∠OEB,∴OE∥BC,∴∠OEA=∠ACB=90°,即OE⊥AC,∴AC为⊙O的切线.(2)∵OE∥BC,∴△AOE∽△ABC,∴OE:BC=AE:AC.∵CE:AE=2:3,∴AE:AC=3:1,∴OE:BC=3:1.∵OE∥BC,∴△OEF∽△CBF,∴.点睛:本题考查了切线的判定,在解决切线问题时,常常连接圆心和切点,证明垂直或根据切线得到垂直.21、-x-1,-1.【分析】先将原分式化简,然后根据分式有意义的条件代入适当的值即可.【详解】解:原式当时(不能取-1或1,否则无意义)原式.【点睛】此题考查的是分式的化简求值题,掌握分式的运算法则和分式有意义的条件是解决此题的关键.22、(1);(2)是等边三角形,理由见解析;(3)的长为或;(4)【分析】(1)先证AC垂直平分DB,即可证得AD=AB;(2)先证AD=BD,又因为AD=AB,可得△ABD是等边三角形;

(3)分当点在上时和当点在上时,由勾股定理列方程求解即可;(4)连结OC,证明OC∥AD,由与半圆相切,可得∠OCP=90°,即可得到与的位置关系.【详解】解:(1)∵为直径,∴∠ACB=90°,又∵∴AD=AB∴,故答案为10;(2)是等边三角形,理由如下:∵点与点重合,∴,∵,∴,∵,∴,∴是等边三角形;(3)∵,∴,当点在上时,则,,∵,,∴在和中,由勾股定理得,即,解得,∴;当点在上时,同理可得,解得,∴,综上所述,的长为或;(4).如图,连结OC,∵与半圆相切,∴OC⊥PC,∵△ADB为等腰三角形,,∴∠DAC=∠BAC,∵AO=OC∴∠CAO=∠ACO,∴∠DAC=∠ACO,∴OC∥AD,∴.【点睛】考查了圆的综合题,涉及的知识点有直角三角形的性质和圆的性质,等边三角形的判定和性质,垂直平分线的性质,勾股定理,,分类思想的运用,综合性较强,有一定的难度.23、(1)90海里;(2)1.4小时.【分析】(1)过点M作MD⊥AB于点D,根据AM=180海里以及△AMD的三角函数求出MD的长度;(2)根据三角函数求出MB的长度,然后计算.【详解】解:(1)过点M作MD⊥AB于点D,∵∠AME=45°,∴∠AMD=∠MAD=45°,∵AM=180海里,∴MD=AM•cos45°=90(海里),答:渔船从A到B的航行过程中与小岛M之间的最小距离是90海里;(2)在Rt△DMB中,∵∠BMF=60°,∴∠DMB=30°,∵MD=90海里,∴MB=60海里,∴60÷20≈1.4(小时),答:渔船从B到达小岛M的航行时间约为1.4小时.考点:三角函数的实际应用24、(1)见解析;(2);(3)①r1=1,;②△BFF'与△DEF'的面积比为或【分析】(1)连结,证明,得出,则结论得证;(2)求出,,连结,则,由弧长公式可得出答案;(3)①如图3,过作于,则,四边形是矩形,设圆的半径为,则.,证明,由比例线段可得出的方程,解方程即可得出答案;②证明,当或时,根据相似三角形的性质可得出答案.【详解】解:(1)连结DO,∵BD平分∠ABC,∴∠CBD=∠ABD,∵DO=BO,∴∠ODB=∠OBD,∴∠CBD=∠ODB.∴DO∥BC,∵∠C=90°,∴∠ADO=90°,∴AC是⊙O的切线;(2)∵E是AO中点,∴AE=EO=DO=BO=,∴sin∠A=,∴∠A=30°,∠B=60°,连结FO,则∠BOF=60°,∴=.(3)①如图3,连结OD,过O作OM⊥BC于M,则BM=FM,四边形CDOM是矩形设圆的半径为r,则OA=5﹣r.BM=FM=r﹣,∵DO∥BC,∴∠AOD=∠OBM,而∠ADO=90°=∠OMB,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论