甘肃省天水一中届高三上学期开学数学试卷(理科)_第1页
甘肃省天水一中届高三上学期开学数学试卷(理科)_第2页
甘肃省天水一中届高三上学期开学数学试卷(理科)_第3页
甘肃省天水一中届高三上学期开学数学试卷(理科)_第4页
甘肃省天水一中届高三上学期开学数学试卷(理科)_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精2017—2018学年甘肃省天水一中高三(上)开学数学试卷(理科)一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)已知A={x|x2﹣4x﹣5=0},B={x|x2=1},则A∩B=()A.{1} B.{1,﹣1,5} C.{﹣1} D.{1,﹣1,﹣5}【分析】求出集合A,B,然后求解交集即可.【解答】解:A={x|x2﹣4x﹣5=0}={﹣1,5},B={x|x2=1}={﹣1,1},则A∩B={﹣1}.故选:C.【点评】本题考查集合的交集的运算,是对基本知识的考查.2.(4分)sin75°sin15°+cos75°cos15°的值为()A.1 B.0 C. D.【分析】直接利用两角和与差的余弦函数,通过特殊角的三角函数求解即可.【解答】解:sin75°sin15°+cos75°cos15°=cos(75°﹣15°)=cos60.故选:C.【点评】本题考查两角和与差的三角函数,特殊角是三角函数求值,考查计算能力.3.(4分)在△ABC中,已知b=40,c=20,C=60°,则此三角形的解的情况是()A.有一解 B.有两解C.无解 D.有解但解的个数不确定【分析】利用正弦定理列出关系式,将b,c,sinC的值代入求出sinB的值,即可做出判断.【解答】解:∵在△ABC中,b=40,c=20,C=60°,∴由正弦定理=得:sinB===>1,则此三角形无解.故选:C.【点评】此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.4.(4分)设a=40.8,b=80。4,c=,则()A.a>c>b B.b>a>c C.c>d>b D.a>b>c【分析】先将指数化成都以2为底,然后根据函数y=2x在R上单调性进行比较即可.【解答】解:a=40。8=21.6,b=80。4=21.2,c==21.5,根据函数y=2x在R上单调递增而1.2<1。5<1.6∴21.2<21。5<21.6,即b<c<a故选A.【点评】本题主要考查了指数函数的单调性,解题的关键是将指数化成同底,属于基础题.5.(4分)定义在实数集R上的凼数f(x)图象连续不断,且f(x)满足xf′(x)<0,则必有()A.f(﹣2)+f(1)>f(0) B.f(﹣1)+f(1)>2f(0) C.f(﹣2)+f(1)<f(0) D.f(﹣1)+f(1)<2f(0)【分析】先由xf′(x)<0便可得到,从而根据极大值的定义即可判断出f(0)是f(x)的极大值,并是最大值,从而f(﹣1)<f(0),f(1)<f(0),所以便得到f(﹣1)+f(1)<2f(0).【解答】解:由xf′(x)<0得:x∈(﹣∞,0)时,f′(x)>0;x∈(0,+∞)时,f′(x)<0;∴f(0)是f(x)的极大值,也是最大值;所以对于任意x∈R,f(x)≤f(0);∴;所以必有f(﹣1)+f(1)<2f(0).故选:D.【点评】考查极大值的定义,以及利用导数判断极大值的过程,以及最大值的概念,及其求法.6.(4分)函数f(x)=lnx的图象与函数g(x)=x2﹣4x+4的图象的交点个数为()A.0 B.1 C.2 D.3【分析】在同一个坐标系中,画出函数f(x)=㏑x与函数g(x)=x2﹣4x+4=(x﹣2)2的图象,数形结合可得结论.【解答】解:在同一个坐标系中,画出函数f(x)=㏑x与函数g(x)=x2﹣4x+4=(x﹣2)2的图象,如图所示:故函数f(x)=㏑x的图象与函数g(x)=x2﹣4x+4的图象的交点个数为2,故选C.【点评】本题主要考查方程的根的存在性及个数判断,体现了数形结合的数学思想,属于中档题.7.(4分)国家规定个人稿费纳税办法是:不超过800元的不纳税;超过800元而不超过4000元的按超过800元部分的14%纳税;超过4000元的按全部稿酬的11%纳税.已知某人出版一本书,共纳税420元,这个人应得稿费(扣税前)为()A.2800元 B.3000元 C.3800元 D.3818元【分析】根据题意求出稿费的函数表达式,然后利用纳税420元,求出这个人应得稿费(扣税前).【解答】解:设扣税前应得稿费为x元,则应纳税额为分段函数,由题意得y=.如果稿费为4000元应纳税为448元,现知某人共纳税420元,所以稿费应在800~4000元之间,∴(x﹣800)×14%=420,∴x=3800.故选C.【点评】本题考查分段函数及其应用,考查学生分析问题解决问题的能力,是基础题.8.(4分)已知关于x的二次方程x2+2mx+2m+1=0,若方程有两根,其中一根在区间(﹣1,0)内,另一根在区间(1,2)内,则m的取值范围()A. B. C.1<m<2 D.2<m<3【分析】设f(x)=x2+2mx+2m+1,问题转化为抛物线f(x)=x2+2mx+2m+1与x轴的交点分别在区间(﹣1,0)和(1,2)内,由根与系数的关系得出不等式,解不等式组求得m的范围.【解答】解:设f(x)=x2+2mx+2m+1,问题转化为抛物线f(x)=x2+2mx+2m+1与x轴的交点分别在区间(﹣1,0)和(1,2)内,则,解得﹣<m<﹣,故m的范围是(﹣,﹣),故选:A.【点评】本题主要考查一元二次方程根的分布与系数的关系,函数零点判定定理的应用;体现了转化的数学思想,属于中档题.9.(4分)设函数若f(x)是奇函数,则g(2)的值是()A. B.﹣4 C. D.4【分析】由f(x)是奇函数得f(x)=﹣f(﹣x),再由x<0时,f(x)=2x,求出g(x)的解析式,再求出g(2)的值.【解答】解:∵f(x)为奇函数,x<0时,f(x)=2x,∴x>0时,f(x)=﹣f(﹣x)=﹣2﹣x=,即,.故选A.【点评】本题考查了利用奇函数的关系式求函数的解析式,再求出函数的值,注意利用负号对自变量进行范围的转化.10.(4分)函数y=x•2x的部分图象如下,其中正确的是()A. B. C. D.【分析】判断四个选择项中哪三个图象反映的性质与函数y=x•2x的实际性质不符,即可排除之.【解答】解:当x=0时,y=0,所以A项不正确;当x>0时,函数递增,所以D项不正确;又y′=2x•(1+xln2),显然x<0时,导数符号可正可负,函数有增有减,所以B项不正确.故选:C.【点评】本题考查函数的性质与识图能力,一般利用排除法求解.二、填空题(每题4分,满分16分,将答案填在答题纸上)11.(4分)函数,则它的值域为.【分析】先整理函数的解析式,进而设t=2x,根据x的范围确定t的范围,进而求得函数是关于t的一元二次函数,根据其性质及t的范围求得函数的最大和最小值.【解答】解:=(2x)2﹣2x+1设t=2x,∵x∈[﹣3,2]∴≤t≤4∴y=t2﹣t+1=(t﹣)2+,开口向上,对称轴为x=,≤t≤4∴≤y≤13故函数的值域为故答案为.【点评】本题主要考查了函数的值域.解题的关键是利用了换元法,把函数解析式整理成一元二次函数.12.(4分)已知,则的值是.【分析】通过,利用两角和的正切函数,求出tanα,然后对表达式的分子、分母同除cosα,然后代入即可求出表达式的值.【解答】解:可得tanα=,因为===;故答案为:.【点评】本题是基础题,考查三角函数的求值与化简,注意表达式的分子、分母同除cosα,是解题的关键.13.(4分)已知f(x)=xex,记f1(x)=f′(x),f2(x)=f1′(x),…fn+1(x)=fn′(x)(n∈N*),则fn(x)=nx+xex(用x表示).【分析】由已知中f(x)=xex,记f1(x)=f′(x),f2(x)=f1′(x),…fn+1(x)=fn′(x)(n∈N*),分析出fn(x)解析式随n变化的规律,可得答案.【解答】解:∵f(x)=xex,f1(x)=f′(x)=ex+xex,f2(x)=f1′(x)=2ex+xex,f3(x)=f2′(x)=3ex+xex,…由此归纳可得:fn(x)=fn﹣1′(x)=nx+xex,故答案为:nx+xex.【点评】归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).14.(4分)给出封闭函数的定义:若对于定义域D内的任意一个自变量x0,都有函数值f(x0)∈D,则称函数y=f(x)在D上封闭.若定义域D=(0,1),则函数①f1(x)=3x﹣1;②f2(x)=﹣x2﹣x+1;③f3(x)=1﹣x;④f4(x)=,其中在D上封闭的是②③④.(填序号即可)【分析】利用函数的单调性求出值域,即可判断出结论.【解答】解:定义域D=(0,1),则函数①f1(x)=3x﹣1∈(0,2),不是封闭函数;②f2(x)=﹣x2﹣x+1=﹣+∈(0,1),属于封闭函数;③f3(x)=1﹣x∈(0,1),是封闭函数;④f4(x)=∈(0,1),是封闭函数.其中在D上封闭的是②③④.故答案为:②③④.【点评】本题考查了利用函数的单调性求函数值域、封闭函数,考查了推理能力与计算能力,属于中档题.三、解答题(本大题共4小题,共44分.解答应写出文字说明、证明过程或演算步骤。)15.(11分)设集合A={a,a2,b2﹣1},B={0,|a|,b},且A=B.(1)求a,b的值;(2)求函数的单调递增区间,并证明.【分析】(1)根据集合的相等关系求出a,b的值即可;(2)求出f(x)的解析式,根据函数的单调性的定义证明函数的单调性即可.【解答】解:(1)两集合相等,观察发现a不能为0,故只有b2﹣1=0,得b=﹣1或b=1,当b=﹣1时,故b与a对应,所以a=﹣1,如果b=1,则必有|a|=1,B不成立;故a=﹣1,b=﹣1.(2)由(1)得,因为x∈R,当x>0时,,当x=1时取得最小值,函数的单调增区间为(﹣∞,﹣1],[1,+∞);函数是奇函数,单调减区间为(﹣1,0),(0,1),①在[1,+∞)上是增函数,任取x1,x2∈[1,+∞),令x1<x2,=,∵1≤x1<x2,∴x1﹣x2<0,又x1x2>1,故,∴,∴f(x1)<f(x2),故在[1,+∞)上是增函数.因为函数是奇函数,所以(﹣∞,﹣1]上也是增函数;②函数在x∈(0,1)时,任取x1,x2∈(0,1),令x1<x2,=,∵0<x1<x2<1,∴x1﹣x2<0,又1>x1x2>0,故,∴,∴f(x1)>f(x2)故在(0,1)上是减函数,因为函数是奇函数,所以(﹣1,0)上也是减函数;综上:函数的单调增区间为(﹣∞,﹣1],[1,+∞);单调减区间为(﹣1,0),(0,1).【点评】本题考查了集合的相等,考查函数的单调性问题,考查单调性的定义,是一道中档题.16.(11分)已知函数f(x)=sinxcosx+cos2x+.(1)当x∈[﹣,]时,求函数y=f(x)的值域;(2)已知ω>0,函数g(x)=f(+),若函数g(x)在区间[﹣,]上是增函数,求ω的最大值.【分析】(1)利用三角恒等变换化简函数的解析式,再利用正弦的定义域和值域求得f(x)的值域.(2)利用正弦函数的单调性、定义域和值域,求得ω的范围,可得ω的最大值.【解答】解:(1).∵,∴,∴.∴函数y=f(x)的值域为.(2),当,有,∵g(x)在上是增函数,且ω>0,∴.即,化简得,∵ω>0,∴,k∈Z,∴k=0,解得ω≤1,因此,ω的最大值为1,【点评】本题主要考查三角恒等变换,正弦函数的单调性、定义域和值域,属于中档题.17.(11分)已知函数f(x)的定义域为(﹣1,1),且同时满足下列条件:(1)f(x)是奇函数;(2)f(x)在定义域上单调递减;(3)f(1﹣a)+f(1﹣a2)<0.求a的取值范围.【分析】利用函数是奇函数,将不等式f(1﹣a)+f(1﹣a2)<0转化为f(1﹣a)<﹣f(1﹣a2)=f(a2﹣1),然后利用函数的单调性进行求解.【解答】解:(1)(3)由f(1﹣a)+f(1﹣a2)<0得f(1﹣a)<﹣f(1﹣a2),∵函数y=f(x)是奇函数,∴﹣f(1﹣a2)=f(a2﹣1),即不等式等价为f(1﹣a)<f(a2﹣1),∵y=f(x)在定义域(﹣1,1)上是减函数,∴有,即,∴,解得0<a<1.故答案为:0<a<1.【点评】本题主要考查函数奇偶性和单调性的应用,利用函数的奇偶性将不等式进行转化是解决本题的关键,综合考查函数的性质.18.(11分)已知函数f(x)=[x]+|sin|,x∈[﹣1,1].其中[x]表示不超过x的最大整数,例如[﹣3.5]=﹣4,[2。1]=2.(Ⅰ)试判断函数f(x)的奇偶性,并说明理由;(Ⅱ)求函数f(x)的值域.【分析】(Ⅰ)根据函数奇偶性的定义即可试判断函数f(x)的奇偶性;(Ⅱ)求出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论