2024届江苏省通州区金郊初级中学数学八上期末检测试题含解析_第1页
2024届江苏省通州区金郊初级中学数学八上期末检测试题含解析_第2页
2024届江苏省通州区金郊初级中学数学八上期末检测试题含解析_第3页
2024届江苏省通州区金郊初级中学数学八上期末检测试题含解析_第4页
2024届江苏省通州区金郊初级中学数学八上期末检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省通州区金郊初级中学数学八上期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在代数式和中,均可以取的值为()A.9 B.3 C.0 D.-22.下列各选项中,所求的最简公分母错误的是()A.与的最简公分母是6x B.与最简公分母是3a2b3cC.与的最简公分母是 D.与的最简公分母是m2-n23.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2) B.(﹣3,2) C.(3,﹣2) D.(﹣3,﹣2)4.下列各式计算结果是的是()A. B. C. D.5.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25° B.30° C.35° D.40°6.在平面直角坐标系中,点A(m,-2)与点B(-3,n)关于y轴对称,则点(m,n)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.下列各数中,(相邻两个3之间2的个数逐次增加1),无理数有()A.0个 B.1个 C.2个 D.3个8.如图,直线y1=kx+b过点A(0,3),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是().A. B. C. D.1<x<29.若,则的值为()A. B. C. D.10.下列命题是假命题的是()A.对顶角相等 B.同位角相等 C.同角的余角相等 D.三角形的三个外角和为360°二、填空题(每小题3分,共24分)11.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为______度.12.若的乘积中不含的一次项,则常数_________.13.若等腰三角形的两边长是2和5,则此等腰三角形的周长是__.14.若,则________.15.如果表示a、b的实数的点在数轴上的位置如图所示,那么化简|a﹣b|+的结果是_____.16.用反证法证明“等腰三角形的底角是锐角”时,首先应假设_____17.计算:=.18.已知,为实数,等式恒成立,则____________.三、解答题(共66分)19.(10分)如图所示,CA=CD,∠1=∠2,BC=EC,求证:AB=DE.20.(6分)已知,如图,,E是AB的中点,,求证:.21.(6分)如图,在10×10的正方形网格中,每个小正方形的边长为1.已知点A、B都在格点上(网格线的交点叫做格点),且它们的坐标分别是A(2,-4)、B(3,-1).(1)点关于轴的对称点的坐标是______;(2)若格点在第四象限,为等腰直角三角形,这样的格点有个______;(3)若点的坐标是(0,-2),将先沿轴向上平移4个单位长度后,再沿轴翻折得到,画出,并直接写出点点的坐标;(4)直接写出到(3)中的点B1距离为10的两个格点的坐标.22.(8分)阅读下面材料:数学课上,老师给出了如下问题:如图,AD为△ABC中线,点E在AC上,BE交AD于点F,AE=EF.求证:AC=BF.经过讨论,同学们得到以下两种思路:思路一如图①,添加辅助线后依据SAS可证得△ADC≌△GDB,再利用AE=EF可以进一步证得∠G=∠FAE=∠AFE=∠BFG,从而证明结论.思路二如图②,添加辅助线后并利用AE=EF可证得∠G=∠BFG=∠AFE=∠FAE,再依据AAS可以进一步证得△ADC≌△GDB,从而证明结论.完成下面问题:(1)①思路一的辅助线的作法是:;②思路二的辅助线的作法是:.(2)请你给出一种不同于以上两种思路的证明方法(要求:只写出辅助线的作法,并画出相应的图形,不需要写出证明过程).23.(8分)以点为顶点作等腰,等腰,其中,如图1所示放置,使得一直角边重合,连接、.(1)试判断、的数量关系,并说明理由;(2)延长交于点试求的度数;(3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由.24.(8分)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB中点时,判断▱ADEF的形状;(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.25.(10分)解方程:26.(10分)如图,在△ABC中,∠B=60°,D、E分别为AB、BC上的点,且AE、CD相交于点F.若AE、CD分别为△ABC的角平分线.(1)求∠AFC的度数;(2)若AD=3,CE=2,求AC的长.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据分式与算术平方根式有意义的条件,可得x的取值范围,一一判断可得答案.【题目详解】解:有题意得:和由意义,得:,可得;x>3,其中x可以为9,故选A.【题目点拨】本题主要考查分式与算术平方根式有意义的条件.2、C【解题分析】A.与的最简公分母是6x,故正确;B.与最简公分母是3a2b3c,故正确;C.与的最简公分母是,故不正确;D.与的最简公分母是m2-n2,故正确;故选C.3、C【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【题目详解】解:如图,棋子“炮”的坐标为(3,﹣2).故选C.4、B【分析】根据同底数幂相乘,幂的乘方,同底数幂相除及合并同类项的知识解答即可.【题目详解】,故A错误;,故B正确;,故C错误;与不是同类项,无法合并,故D错误.故选:B【题目点拨】本题考查的是同底数幂相乘,幂的乘方,同底数幂相除及合并同类项,掌握各运算的法则是关键.5、D【解题分析】∵在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠B=90°﹣25°=65°.∵△CDB′由△CDB反折而成,∴∠CB′D=∠B=65°.∵∠CB′D是△AB′D的外角,∴∠ADB′=∠CB′D﹣∠A=65°﹣25°=40°.故选D.6、D【分析】根据点A(m,-2)与点B(-3,n)关于y轴对称求出m、n的值,即可得到点(m,n)的坐标,从而判断其所在的象限.【题目详解】∵点A(m,-2)与点B(-3,m)关于y轴对称∴解得∴点(3,-2)在第四象限故答案为:D.【题目点拨】本题考查了关于y轴对称的点的问题,掌握关于y轴对称的点的性质、象限的定义以及性质是解题的关键.7、C【分析】直接根据无理数的定义直接判断得出即可.【题目详解】(相邻两个3之间2的个数逐次增加1)中只有,2.32232223…(相邻两个3之间的2的个数逐次增加1)共2个是无理数.

故选:C.【题目点拨】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:等;开方开不尽的数;以及像2.32232223…,等有这样规律的数.8、C【分析】先把A点代入y+kx+b得b=3,再把P(1,m)代入y=kx+3得k=m−3,接着解(m−3)x+3>mx−2得x<,然后利用函数图象可得不等式组mx>kx+b>mx−2的解集.【题目详解】把P(1,m)代入y=kx+3得k+3=m,解得k=m−3,解(m−3)x+3>mx−2得x<,所以不等式组mx>kx+b>mx−2的解集是1<x<.故选:C.【题目点拨】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.9、A【解题分析】试题解析:设故选A.10、B【分析】由题意根据对顶角的概念、同位角的定义、余角、三角形外角和的概念判断.【题目详解】解:A、对顶角相等,是真命题;B、两直线平行,同位角相等,则同位角相等是假命题;C、同角的余角相等,是真命题;D、三角形的三个外角和为360°,是真命题.故选:B.【题目点拨】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉相关的性质定理.二、填空题(每小题3分,共24分)11、1【分析】根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.【题目详解】解:∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=1°,故答案为1.【题目点拨】本题考查了三角形内角和定理与等腰三角形的性质,解题的关键是能根据等腰三角形性质、三角形内角和定理与已知条件得出5∠A=180°.12、1【分析】直接利用多项式乘法去括号,进而得出一次项系数为0,求解即可.【题目详解】∵的乘积中不含的一次项,∴=中∴故答案为:1.【题目点拨】本题主要考查了多项式乘多项式,解答本题的关键在于正确去括号并计算.13、1.【分析】根据等腰三角形的性质分腰长为2和腰长为5两种情况讨论,选择能构成三角形的求值即可.【题目详解】解:①腰长为2,底边长为5,2+2=4<5,不能构成三角形,故舍去;②腰长为5,底边长为2,则周长=5+5+2=1.故其周长为1.故答案为:1.【题目点拨】本题考查了等腰三角形,已知两边长求周长,结合等腰三角形的性质,灵活的进行分类讨论是解题的关键.14、【解题分析】直接利用已知将原式变形进而得出x,y之间的关系进而得出答案.【题目详解】,,故2y=x,则,故答案为:.【题目点拨】本题考查了比例的性质,正确将原式变形是解题关键.15、﹣2b【解题分析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a.b都是数轴上的实数,注意符号的变换.16、等腰三角形的底角是钝角或直角【解题分析】根据反证法的第一步:假设结论不成立设,可以假设“等腰三角形的两底都是直角或钝角”.

故答案是:等腰三角形的两底都是直角或钝角.17、1.【解题分析】试题分析:原式==9﹣1=1,故答案为1.考点:二次根式的混合运算.18、-12【分析】根据多项式乘多项式的运算方法将展开,再根据恒成立,求出m的值即可.【题目详解】,根据题意:恒成立,∴,,解得:,.故答案为:.【题目点拨】本题主要考查了多项式乘多项式的运算方法,熟练掌握运算法则是解题的关键.三、解答题(共66分)19、答案见解析.【分析】由∠1=∠2可得∠ACB=∠DCE,再结合已知条件不难证明△ACB≌△DCE,即可证明AB=DE.【题目详解】证明:∵∠1=∠2,∴∠ACB=∠DCE,∵在△ACB和△DCE中,,∴△ACB≌△DCE,∴AB=DE.20、见解析【分析】由CE=DE易得∠ECD=∠EDC,结合AB∥CD易得∠AEC=∠BED,由此再结合AE=BE,CE=DE即可证得△AEC≌△BED,由此即可得到AC=BD.【题目详解】∵,∴,∵,∴,,∴,又∵是AB的中点,∴,在和中,,∴≌.∴.【题目点拨】熟悉“等腰三角形的性质、平行线的性质和全等三角形的判定方法”是解答本题的关键.21、(1)(3,1);(2)4;(3)画图见解析,B1(-3,3);(4)(3,-5)或(5,-3).【分析】(1)根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案;

(2)根据题意分别确定以AB的直角边可得两个点,再以AB为斜边可得两个点,共4个点;

(3)根据题意确定出A、B、C三点的对应点,再连接可得△A1B1C1,进而可得点B1的坐标;

(4)利用勾股定理可得与点B1距离为10的两个点的坐标,答案不唯一.【题目详解】(1)B

(3,-1)关于x轴的对称点的坐标是(3,1),

故答案为:(3,1);

(2)△ABC为等腰直角三角形,格点C在第四象限,AB为直角边,B为直角顶点时,C点坐标为(6,-2),AB为直角边,A为直角顶点时,C点坐标为(5,-5),AB为斜边时,C点坐标为(1,-2),(4,-3),则C点坐标为(6,-2),(5,-5),(1,-2),(4,-3),共4个,

故答案为:4;

(3)如图所示,即为所求,B1(-3,3);

(4)∵,∴符合题意的点可以为:(3,-5),(5,-3).【题目点拨】本题主要考查了轴对称变换以及平移变换、等腰三角形的性质、勾股定理的应用,正确得出对应点位置是解题关键.22、(1)①延长AD至点G,使DG=AD,连接BG;②作BG=BF交AD的延长线于点G;(2)详见解析【分析】(1)①依据SAS可证得△ADC≌△GDB,再利用AE=EF可以进一步证得∠G=∠FAE=∠AFE=∠BFG,从而证明结论.②作BG=BF交AD的延长线于点G.利用AE=EF可证得∠G=∠BFG=∠AFE=∠FAE,再依据AAS可以进一步证得△ADC≌△GDB,从而证明结论.(2)作BG∥AC交AD的延长线于G,证明△ADC≌△GDB(AAS),得出AC=BG,证出∠G=∠BFG,得出BG=BF,即可得出结论.【题目详解】解:(1)①延长AD至点G,使DG=AD,连接BG,如图①,理由如下:∵AD为△ABC中线,∴BD=CD,在△ADC和△GDB中,,∴△ADC≌△GDB(SAS),∴AC=BG,∵AE=EF,∴∠CAD=∠EFA,∵∠BFG=∠G,∠G=∠CAD,∴∠G=∠BFG,∴BG=BF,∴AC=BF.故答案为:延长AD至点G,使DG=AD,连接BG;②作BG=BF交AD的延长线于点G,如图②.理由如下:∵BG=BF,∴∠G=∠BFG,∵AE=EF,∴∠EAF=∠EFA,∵∠EFA=∠BFG,∴∠G=∠EAF,在△ADC和△GDB中,,∴△ADC≌△GDB(AAS),∴AC=BG,∴AC=BF;故答案为:作BG=BF交AD的延长线于点G;(2)作BG∥AC交AD的延长线于G,如图③所示:则∠G=∠CAD,∵AD为△ABC中线,∴BD=CD,在△ADC和△GDB中,,∴△ADC≌△GDB(AAS),∴AC=BG,∵AE=EF,∴∠CAD=∠EFA,∵∠BFG=∠EFA,∠G=∠CAD,∴∠G=∠BFG,∴BG=BF,∴AC=BF.【题目点拨】本题主要考查全等三角形的判定和性质、等腰三角形的性质、其中一般证明两个三角形全等共有四个定理:AAS、ASA、SAS、SSS,需要同学们灵活运用,解题的关键是学会做辅助线解决问题.23、(1)BD=CE,理由见解析;(2)90°;(3)成立,理由见解析.【分析】(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△AEC,则BD=CE;(2)由△ADB≌△AEC得到∠ACE=∠DBA,利用三角形内角和定理可得到∠BFC=180°-∠ACE-∠CDF=180°-∠DBA-∠BDA=∠DAB=90°;(3)与(1)一样可证明△ADB≌△AEC,得到BD=CE,∠ACE=∠DBA,利用三角形内角和定理得到∠BFC=∠DAB=90°.【题目详解】(1)∵△ABC、△ADE是等腰直角三角形,∴AB=AC,∠BAD=∠EAC=90°,AD=AE,∵在△ADB和△AEC中,∴△ADB≌△AEC(SAS),∴BD=CE;(2)∵△ADB≌△AEC,∴∠ACE=∠ABD,而在△CDF中,∠BFC=180°-∠ACE-∠CDF,又∵∠CDF=∠BDA,∴∠BFC=180°-∠DBA-∠BDA=∠DAB=90°;(3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下:∵△ABC、△ADE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∵∠BAC+∠CAD=∠EAD+∠CAD,∴∠BAD=∠CAE,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE,∠ACE=∠DBA,∴∠BFC=∠DAB=90°.【题目点拨】本题考查全等三角形的判定与性质.判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,熟知判定方法并根据题目条件选择合适的方法进行解答.24、(1)证明见解析;(2)▱ADEF的形状为菱形,理由见解析;(3)四边形AEGF是矩形,理由见解析.【解题分析】(1)根据平行线的性质得到∠BDE=∠A,根据题意得到∠DEF=∠BDE,根据平行线的判定定理得到AD∥EF,根据平行四边形的判定定理证明;(2)根据三角形中位线定理得到DE=AC,得到AD=DE,根据菱形的判定定理证明;(3)根据等腰三角形的性质得到AE⊥EG,根据有一个角是直角的平行四边形是矩形证明.【题目详解】(1)证明:∵DE∥AC,∴∠BDE=∠A,∵∠DEF=∠A,∴∠DEF=∠BDE,∴AD∥EF,又∵DE∥AC,∴四边形ADEF为平行四边形;(2)解:□ADEF的形状为菱形,理由如下:∵点D为AB中点,∴AD=AB,∵DE∥AC,点D为AB中点,∴DE=AC,∵AB=AC,∴AD=DE,∴平行四边形ADEF为菱形,(3)四边形AEGF是矩形,理由如下:由(1)得,四边形ADEF为平行四边形,∴AF∥DE,AF=DE,∵EG=DE,∴AF∥DE,AF=GE,∴四边形AEGF是平行四边形,∵AD=AG,EG=DE,∴AE⊥EG

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论