2024届江苏省宿迁市泗阳县八上数学期末调研模拟试题含解析_第1页
2024届江苏省宿迁市泗阳县八上数学期末调研模拟试题含解析_第2页
2024届江苏省宿迁市泗阳县八上数学期末调研模拟试题含解析_第3页
2024届江苏省宿迁市泗阳县八上数学期末调研模拟试题含解析_第4页
2024届江苏省宿迁市泗阳县八上数学期末调研模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省宿迁市泗阳县八上数学期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列坐标系表示的点在第四象限的是()A. B. C. D.2.下列交通标志图案是轴对称图形的是()A. B. C. D.3.如图,AC与BD交于O点,若,用“SAS”证明≌,还需A. B.C. D.4.正方形的面积为6,则正方形的边长为()A. B. C.2 D.45.在下列长度的各组线段中,能组成三角形的是()A.,, B.,, C.,, D.,,6.如图,在平面直角坐标系中,已知正比例函数与一次函数的图象交于点,设轴上有一点,过点作轴的垂线(垂线位于点的右侧)分别交和的图象与点、,连接,若,则的面积为()A. B. C. D.7.如图一个五边形木架,要保证它不变形,至少要再钉上几根木条()A.4 B.3 C.2 D.18.已知不等式x﹣1≥0,此不等式的解集在数轴上表示为()A. B. C. D.9.某小区开展“节约用水,从我做起”活动,下表是从该小区抽取的10个家庭本月与上月相比节水情况统计表:节水量()0.20.30.40.50.6家庭数(个)12241这10个家庭节水量的平均数和中位数分别是()A.0.42和0.4 B.0.4和0.4 C.0.42和0.45 D.0.4和0.4510.若分式的值为则()A. B. C.或 D.或11.如图,一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,点C是OA的中点,过点C作CD⊥OA于C交一次函数图象于点D,P是OB上一动点,则PC+PD的最小值为()A.4 B. C.2 D.2+212.如图,在中,的垂直平分线交于点,连接,若,,则的度数为()A.90° B.95° C.105° D.115°二、填空题(每题4分,共24分)13.己知a2-3a+1=0,则数式(a+1)(a-4)的值为______。14.如图,等边的边垂直于轴,点在轴上已知点,则点的坐标为____.15.分式的最简公分母是_____________.16.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.17.如图,线段的垂直平分线分别交、于点和点,连接,,,则的度数是_____________.18.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,连接EF交AP于点G.给出以下四个结论,其中正确的结论是_____.①AE=CF,②AP=EF,③△EPF是等腰直角三角形,④四边形AEPF的面积是△ABC面积的一半.三、解答题(共78分)19.(8分)解不等式(组),并将解集表示在数轴上:(1)解不等式:(2)解不等式组:20.(8分)甲、乙两人两次同时在同一家超市采购货物(假设两次采购货物的单价不相同),甲每次采购货物100千克,乙每次采购货物用去100元.(1)假设a、b分别表示两次采购货物时的单价(单位:元/千克),试用含a、b的式子表示:甲两次采购货物共需付款元,乙两次共购买千克货物.(2)请你判断甲、乙两人采购货物的方式哪一个的平均单价低,并说明理由.21.(8分)如图,在△ABC中,AB=AC,D为BC的中点,E,F两点分别在AB,AC边上且BE=CF.求证:DE=DF.22.(10分)已知有两辆玩具车进行30米的直跑道比赛,两车从起点同时出发,A车到达终点时,B车离终点还差12米,A车的平均速度为2.5米/秒.(1)求B车的平均速度;(2)如果两车重新比赛,A车从起点退后12米,两车能否同时到达终点?请说明理由;(3)在(2)的条件下,若调整A车的平均速度,使两车恰好同时到达终点,求调整后A车的平均速度.23.(10分)某校开展“我最喜爱的一项体育活动”调查活动,要求每名学生必选且只能选一项现随机抽查了名学生,并将其结果绘制成如下不完整的条形统计图和扇形统计图.请结合以上信息解答下列问题:(1)______;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为______;(4)已知该校共有3200名学生,请你估计该校最喜爱跑步活动的学生人数.24.(10分)如图,一个直角三角形纸片的顶点A在∠MON的边OM上移动,移动过程中始终保持AB⊥ON于点B,AC⊥OM于点A.∠MON的角平分线OP分别交AB、AC于D、E两点.(1)点A在移动的过程中,线段AD和AE有怎样的数量关系,并说明理由.(2)点A在移动的过程中,若射线ON上始终存在一点F与点A关于OP所在的直线对称,猜想线段DF和AE有怎样的关系,并说明理由.(3)若∠MON=45°,猜想线段AC、AD、OC之间有怎样的数量关系,并证明你的猜想.25.(12分)甲、乙两车从A城出发沿一条笔直公路匀速行驶至B城在整个行驶过程中,甲、乙两车离开A城的距离千米与甲车行驶的时间小时之间的函数关系如图所示.,B两城相距______千米,乙车比甲车早到______小时;甲车出发多长时间与乙车相遇?若两车相距不超过20千米时可以通过无线电相互通话,则两车都在行驶过程中可以通过无线电通话的时间有多长?26.如图,在平面直角坐标系中,直线AB过点A(﹣1,1),B(2,0),交y轴于点C,点D(0,n)在点C上方.连接AD,BD.(1)求直线AB的关系式;(2)求△ABD的面积;(用含n的代数式表示)(3)当S△ABD=2时,作等腰直角三角形DBP,使DB=DP,求出点P的坐标.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据平面直角坐标系中各象限点的特点逐项判断即可.【题目详解】解:A.在x轴上,不合题意;B.在第一象限,不合题意;C.在第四象限,符合题意;D.在第二象限,不合题意.故选:C【题目点拨】本题考查了平面直角坐标系各象限点的特征,熟练掌握平面直角坐标各象限点的符号特点是解题关键.2、B【题目详解】A图形中三角形和三角形内部图案的对称轴不一致,所以不是轴对称图形;B为轴对称图形,对称轴为过长方形两宽中点的直线;C外圈的正方形是轴对称图形,但是内部图案不是轴对称图形,所以也不是;D图形中圆内的两个箭头不是轴对称图象,而是中心对称图形,所以也不是轴对称图形.故选B.3、B【分析】根据全等三角形的判定定理逐个判断即可.【题目详解】A、根据条件,,不能推出≌,故本选项错误;B、在和中,≌,故本选项正确;C、,,,符合全等三角形的判定定理ASA,不符合全等三角形的判定定理SAS,故本选项错误;D、根据和不能推出≌,故本选项错误;故选B.【题目点拨】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.4、B【分析】根据正方形面积的求法即可求解.【题目详解】解:∵正方形的面积为6,

∴正方形的边长为.

故选:B.【题目点拨】本题考查了算术平方根,正方形的面积,解此题的关键是求出6的算术平方根.5、C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【题目详解】A、1+2=3<4,不能组成三角形,故此选项错误;B、4+1=5<9,不能组成三角形,故此选项错误;C、3+4=7>5,能组成三角形,故此选项正确;D、5+4=9,不能组成三角形,故此选项错误;故选:C.【题目点拨】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.6、A【解题分析】联立两一次函数的解析式求出x、y的值即可得出A点坐标,过点A作x轴的垂线,垂足为D,在Rt△OAD中根据勾股定理求出OA的长,故可得出BC的长,根据P(n,0)可用n表示出B、C的坐标,故可得出n的值,由三角形的面积公式即可得出结论.【题目详解】由题意得,,解得,∴A(4,3)过点A作x轴的垂线,垂足为D,在Rt△OAD中,由勾股定理得,OA==1.∴=2.∵P(n,0),∴B(n,),C(n,),∴BC=-()=,∴=2,解得n=8,∴OP=8∴S△OBC=BC•OP=×2×8=44故选A.【题目点拨】本题考查的是两条直线相交或平行问题,根据题意作出辅助线.构造出直角三角形是解答此题的关键.7、C【分析】根据三角形具有稳定性,钉上木条后把五边形分成三角形即可.【题目详解】如图,要保证它不变形,至少还要再钉上2根木条.故选C.【题目点拨】本题考查了三角形具有稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.8、C【分析】根据不等式的性质求出不等式的解集,再在数轴上表示出不等式的解集即可.【题目详解】解:∵x﹣1≥0,∴x≥1.不等式的解集在数轴上表示的方法:>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.因此不等式x≥1即x﹣1≥0在数轴上表示正确的是C.故选C.9、C【分析】根据加权平均数的计算公式与中位数的定义即可求解.【题目详解】10个家庭节水量的平均数为=0.42;第5,6个家庭的节水量为0.4,0.5,∴中位数为0.45,故选C.【题目点拨】此题考查了加权平均数与中位数,掌握加权平均数的计算公式是解题的关键,是一道基础题.10、A【分析】化解分式方程,即可求解,最后检验.【题目详解】,,,解得:x=2,经检验,x=2是原方程的解,故选:A.【题目点拨】本题主要考查了解分式方程,熟练掌握解分式方程的方法是解题关键,特别注意最后需检验.11、C【分析】作点C关于y轴的对称点C′,连接C′D交y轴于点P,此时PC+PD取得最小值,利用一次函数图象上点的坐标特征可得出点A的坐标,由点C是OA的中点可得出点C的坐标,由点C,C′关于y轴对称可得出CC′的值及PC=PC′,再利用勾股定理即可求出此时C′D(即PC+PD)的值,此题得解.【题目详解】解:作点C关于y轴的对称点C′,连接C′D交y轴于点P,此时PC+PD取得最小值,如图所示.当y=0时,﹣1x+4=0,解得:x=1,∴点A的坐标为(1,0).∵点C是OA的中点,∴OC=1,点C的坐标为(1,0).当x=1时,y=﹣1x+4=1,∴CD=1.∵点C,C′关于y轴对称,∴CC′=1OC=1,PC=PC′,∴PC+PD=PC′+PD=C′D=.故选:C.【题目点拨】本题考查了一次函数图象上点的坐标特征、线段垂直平分线的性质、勾股定理以及轴对称最短路线问题,利用两点之间线段最短,找出点P所在的位置是解题的关键.12、C【分析】根据垂直平分线的性质可得DA=DB,根据等边对等角可得∠DAB=∠B=25°,然后根据三角形外角的性质即可求出∠ADC,再根据等边对等角可得∠ADC=∠C=50°,利用三角形的内角和定理即可求出.【题目详解】解:∵DE垂直平分AB∴DA=DB∴∠DAB=∠B=25°∴∠ADC=∠DAB+∠B=50°∵∴∠ADC=∠C=50°∴∠BAC=180°-∠B-∠C=105°故选C.【题目点拨】此题考查的是垂直平分线的性质、等腰三角形的性质、三角形外角的性质和三角形内角和定理,掌握垂直平分线的性质、等边对等角、三角形外角的性质和三角形内角和定理是解决此题的关键.二、填空题(每题4分,共24分)13、-5【分析】先化简数式(a+1)(a-4),再用整体代入法求解即可.【题目详解】∵a2-3a+1=0,∴a2-3a=-1,(a+1)(a-4)=a2-3a-4=-1-4=-5【题目点拨】熟练掌握整式化简及整体代入法是解决本题的关键.14、【分析】根据等边三角形的性质以及30°的直角三角形的性质求出AC的长度,再利用勾股定理求出CE的长度即可得出答案.【题目详解】如图:设AB与x轴交于E点∵AB⊥CE∴∠CEA=90°∵∴AE=2,OE=2∵△ABC是等边三角形,CE⊥AB∴在Rt△ACE中,AC=2AE=4∴∴∴点C的坐标为故答案为:【题目点拨】本题考查了等边三角形,30°的直角三角形的性质,勾股定理,掌握等边三角形,30°的直角三角形的性质,勾股定理是解题的关键.15、【解题分析】试题分析:找分母各项的系数的最小公倍数,和相同字母的次数最高的项,故最简公分母为.考点:最简公分母16、1【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【题目详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=1cm.故填1.【题目点拨】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.17、1【分析】先根据垂直平分线的性质可得,再根据等腰三角形的性质可得的度数,从而可得的度数,最后根据等腰三角形的性质、三角形的内角和定理即可得.【题目详解】由题意得,DE为BC的垂直平分线故答案为:1.【题目点拨】本题考查了垂直平分线的性质、等腰三角形的性质(等边对等角)、三角形的内角和定理等知识点,熟记等腰三角形的性质是解题关键.18、①③④.【分析】根据等腰直角三角形的性质得:∠B=∠C=45°,AP⊥BC,AP=BC,AP平分∠BAC.所以可证∠C=∠EAP;∠FPC=∠EPA;AP=PC.即证得△APE与△CPF全等.根据全等三角形性质判断结论是否正确,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半.【题目详解】∵AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,∴∠B=∠C=45°,AP⊥BC,AP=BC=PC=BP,∠BAP=∠CAP=45°,∵∠APF+∠FPC=90°,∠APF+∠APE=90°,∴∠FPC=∠EPA.∴△APE≌△CPF(ASA),∴AE=CF;EP=PF,即△EPF是等腰直角三角形;故①③正确;S△AEP=S△CFP,∵四边形AEPF的面积=S△AEP+S△APF=S△CFP+S△APF=S△APC=S△ABC,∴四边形AEPF的面积是△ABC面积的一半,故④正确∵△ABC是等腰直角三角形,P是BC的中点,∴AP=BC,∵EF不是△ABC的中位线,∴EF≠AP,故②错误;故答案为:①③④.【题目点拨】本题考查了全等三角形的判定和性质,等腰直角三角形的性质的运用,等腰直角三角形的判定定理的运用,三角形面积公式的运用,解答时灵活运用等腰直角三角形的性质求解是关键.三、解答题(共78分)19、(1),数轴见解析;(2),数轴见解析.【分析】(1)根据去括号,移项合并同类项,系数化为1解不等式,然后将解集表示在数轴上即可;(2)先求出每个不等式的解集,取公共解集,然后将解集表示在数轴上即可.【题目详解】解:(1),,,,在数轴上表示为:;(2),解不等式①得:x≥﹣1,解不等式②得:x<3,∴不等式组的解集为﹣1≤x<3,在数轴上表示为:.【题目点拨】本题考查了解一元一次不等式和解一元一次不等式组、在数轴上表示不等式组的解集的应用,能正确运用不等式的性质解一元一次不等式和能根据不等式的解集找出不等式组的解集是解此题的关键.20、(1)200a,;(2)乙的平均单价低,理由见解析.【分析】(1)甲购买共付款200a元;乙够买了kg;(2)设两次的单价分别为x元与y元,甲购买的平均单价,乙够买的平均单价,作差比较大小0,即可判断乙的平均单价低.【题目详解】解:(1)∵甲购买的单价a元,购买200kg,∴甲购买共付款200a元;∵乙花费100元,购买的单价b元,∴乙够买了kg;(2)设两次的单价分别为x元与y元,由题意可得:甲购买的平均单价,乙够买的平均单价,∵0,∴乙的平均单价低.【题目点拨】本题考查了列代数式;理解题意,列出代数式,并能用作差的方法比较代数式的大小是解题的关键.21、见解析【分析】由AB=AC,D是BC的中点,可得∠B=∠C,BD=CD,又由SAS,可判定△BED≌△CFD,继而证得DE=DF.【题目详解】证明:如图1.∵在△ABC中,,∴∠B=∠C,∵D为BC的中点,.在△BDE与△CDF中,∴△BDE≌△CDF,∴.【题目点拨】此题考查了等腰三角形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.22、(1)B车的平均速度为米/秒;(2)不能,理由见解析;(3)A车调整后的平均速度为米/秒【分析】(1)A车走完全程所用时间秒就是B车走了路程(30-12)米所花的时间,据此列出方程并解得即可;(2)比较A车走完全程(30+12)与B车走了路程所花的时间,即可得到答案;(3)由(2)的结论:B车到达终点所花时间为秒,即可求得A车调整后的平均速度.【题目详解】(1)设B车的平均速度为米/秒,依题意得:解得:∴B车的平均速度为米/秒;(2)不能,理由是:A车从起点退后12米,再到达终点所花时间为:秒;B车到达终点所花时间为:秒;∴A车比B车先到达终点;(3)由(2)的结论:B车到达终点所花时间为秒;∴A车调整后的平均速度应为:米/秒.【题目点拨】本题考查了一元一次方程的实际应用,理清速度、路程、时间三者之间的关系是解题的关键.23、(1)150;(2)答案见解析;(3)36°;(4)1.【解题分析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意用3200乘以最喜爱跑步活动的学生占比计算即可.【题目详解】(1)m=21÷14%=150,故答案为:150;(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°故答案为:36°;(4)3200×26%=1人,答:估计该校约有1名学生最喜爱跑步活动.【题目点拨】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.24、(1)、AD=AE,理由见解析;(2)、AE=DF,AE∥DF;理由见解析;(3)、OC=AC+AD,理由见解析.【解题分析】试题分析:(1)、根据AB⊥ON,AC⊥OM得出∠OAB=∠ACB,根据角平分线得出∠AOP=∠COP,从而得出∠ADE=∠AED,得出答案;(2)、根据点F与点A关于OP所在的直线对称得出AD=FD,AE=EF,然后证明△ADE和△FED全等,从而得出答案;(3)、延长EA到G点,使AG=AE,根据角度之间的关系得出CG=OC,根据(1)的结论得出AD=AE,根据AD=AE=AG得出答案.试题解析:(1)、AD=AE∵AB⊥ON,AC⊥OM.∴∠OAB+∠BAC=90°,∠BAC+∠ACB=90°.∴∠OAB=∠ACB.∵OP平分∠MON,∴∠AOP=∠COP.∵∠ADE=∠AOP+∠OAB,∠AED=∠COP+∠ACB,∴∠ADE=∠AED.(2)、AE=DF,AE∥DF.∵点F与点A关于OP所在的直线对称,∴AD=FD,AE=EF,∵AD=AE,∴AD=FD=AE=EF,∵DE=DE,∴△ADE≌△FED,∴∠AED=∠FDE,AE=DF,∴AE∥DF.(3)、OC=AC+AD延长EA到G点,使AG=AE∵∠OAE=90°∴OA⊥GE,∴OG=OE,∴∠AOG=∠EOA∵∠AOC=45°,OP平分∠AOC∴∠AOE=22.5°∴∠AOG=22.5°,∠G=67.5°∴∠COG=∠G=67.5°∴CG=OC由(1)得AD=AE∵AD=AE=AG∴AC+AD=OC考点:(1)、角度的计算;(2)、等腰三角形的性质;(3)、直角三角形的性质25、(1)300千米,1小时(2)2.5小时(3)1小时【解题分析】(1)根据函数图象可以直接得到A,B两城的距离,乙车将比甲车早到几小时;(2)由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,求得两函数图象的交点即可(3)再令两函数解析式的差小于或等于20,可求得t可得出答案.【题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论