安徽省蚌埠市怀远县2024届数学八上期末质量检测模拟试题含解析_第1页
安徽省蚌埠市怀远县2024届数学八上期末质量检测模拟试题含解析_第2页
安徽省蚌埠市怀远县2024届数学八上期末质量检测模拟试题含解析_第3页
安徽省蚌埠市怀远县2024届数学八上期末质量检测模拟试题含解析_第4页
安徽省蚌埠市怀远县2024届数学八上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省蚌埠市怀远县2024届数学八上期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.长方形的面积是9a2﹣3ab+6a3,一边长是3a,则它的另一边长是()A.3a2﹣b+2a2 B.b+3a+2a2 C.2a2+3a﹣b D.3a2﹣b+2a2.点向左平移2个单位后的坐标是()A. B. C. D.3.甲、乙两个工程队合做一项工程,需要16天完成,现在两队合做9天,甲队因有其他任务调走,乙队再做21天完成任务。求甲、乙两队独做各需几天才能完成任务?若设甲队独做需天才能完成任务,则可列方程()A. B.C. D.4.一次函数的图象与轴交点的坐标是()A.(0,2) B.(0,-2) C.(2,0) D.(-2,0)5.如图所示,在△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN至点G,取NG=NQ,若△MNP的周长为12,MQ=a,则△MGQ周长是()A.8+2a B.8a C.6+a D.6+2a6.计算:等于()A.3 B.-3 C.±3 D.817.某射击队进行1000射击比赛,每人射击10次,经过统计,甲、乙两名队员成绩如下:平均成绩都是96.2环,甲的方差是0.25,乙的方差是0.21,下列说法正确的是()A.甲的成绩比乙稳定 B.乙的成绩比甲稳定C.甲乙成绩稳定性相同 D.无法确定谁稳定8.如图,是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:第10个“上”字需用多少枚棋子()A.40 B.42 C.44 D.469.已知反比例函数图像经过点(2,—3),则下列点中必在此函数图像上的是()A.(2,3) B.(1,6) C.(—1,6) D.(—2,—3)10.如图,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于点D,则S△ADC的值是()A.10 B.8 C.6 D.4二、填空题(每小题3分,共24分)11.如图,长方形ABCD中,AD=8,AB=4,BQ=5,点P在AD边上运动,当为等腰三角形时,AP的长为_____.12.若不等式组有解,则的取值范围是____.13.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=_____.14.如图,平面直角坐标系中有点A(0,1)、B(,0).连接AB,以A为圆心,以AB为半径画弧,交y轴于点P1;连接BP1,以B为圆心,以BP1为半径画弧,交x轴于点P2;连接P1P2,以P1为圆心,以P1P2为半径画弧,交y轴于点P3;按照这样的方式不断在坐标轴上确定点Pn的位置,那么点P6的坐标是_____.15.分解因式x(x﹣2)+3(2﹣x)=_____.16.若关于的分式方程的解为非负数,则的取值范围是___________.17.如图,在△ABC中,AB=AC=24厘米,BC=16厘米,点D为AB的中点,点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为_______厘米/秒时,能够在某一时刻使△BPD与△CQP全等.18.关于x的分式方程无解,则m的值为_______.三、解答题(共66分)19.(10分)解方程:+=420.(6分)如图,为等边三角形,,相交于点,于点,(1)求证:(2)求的度数.21.(6分)某校为了创建书香校远,计划进一批图书,经了解.文学书的单价比科普书的单价少20元,用800元购进的文学书本数与用1200元购进的科普书本数相等.(1)文学书和科普书的单价分别是多少元?(2)该校计划用不超过5000元的费用购进一批文学书和科普书,问购进60本文学书后最多还能购进多少本科普书?22.(8分)用四块完全相同的小长方形拼成的一个“回形”正方形.(1)用不同代数式表示图中的阴影部分的面积,你能得到怎样的等式:________;(2)利用(1)中的结论.计算:,,求的值;(3)根据(1)的结论.若.求的值.23.(8分)如图所示,已知一次函数的图象与轴,轴分别交于点、.以为边在第一象限内作等腰,且,.过作轴于.的垂直平分线交与点,交轴于点.(1)求点的坐标;(2)在直线上有点,且点与点位于直线的同侧,使得,求点的坐标.(3)在(2)的条件下,连接,判断的形状,并给予证明.24.(8分)如图:在平面直角坐标系中,已知的三个顶点的坐标分别为,,.(1)将向上平移个单位长度,再向左平移个单位长度,得到,请画出(点,,的对应点分别为,,)(2)请画出与关于轴对称的(点,,的对应点分别为,,)(3)请写出,的坐标25.(10分)已知一次函数与(k≠0)的图象相交于点P(1,-6).(1)求一次函数的解析式;(2)若点Q(m,n)在函数的图象上,求2n-6m+9的值.26.(10分)如图,已知中,厘米,厘米,点为的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,与是否可能全等?若能,求出全等时点Q的运动速度和时间;若不能,请说明理由.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据长方形面积公式“长×宽=面积”,列出式子后进行化简计算即可。【题目详解】长方形的面积=长×宽,由此列出式子(9a1﹣3ab+6a3)÷3a=3a﹣b+1a1.解:(9a1﹣3ab+6a3)÷3a=3a﹣b+1a1,故选:C.【题目点拨】本题考查了用代数式表示相应的量,解决本题的关键是熟练掌握整式除法的运算法则。2、D【分析】直接利用平移中点的变化规律求解即可.【题目详解】∵点向左平移2个单位,∴平移后的横坐标为5-2=3,∴平移后的坐标为,故选D.【题目点拨】本题是对点平移的考查,熟练掌握点平移的规律是解决本题的关键.3、C【分析】求的是工效,工时,一般根据工作总量来列等量关系,等量关系为:乙21完成的工作量=1-甲9天的工作量.【题目详解】设甲队独做需天才能完成任务,依题意得:故选:C.【题目点拨】考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.涉及到的公式:工作总量=工作效率×工作时间.工作总量通常可以看成“1”.4、D【分析】计算函数值为0所对应的自变量的取值即可.【题目详解】解:当y=0时,x+2=0,解得x=-2,所以一次函数的图象与x轴的交点坐标为(-2,0).故选:D.【题目点拨】本题考查了一次函数图象与x轴的交点:求出函数值为0时的自变量的值即可得到一次函数与x轴的交点坐标.5、D【分析】在△MNP中,∠P=60°,MN=NP,证明△MNP是等边三角形,再利用MQ⊥PN,求得PM、NQ长,再根据等腰三角形的性质求解即可.【题目详解】解:∵△MNP中,∠P=60°,MN=NP

∴△MNP是等边三角形.

又∵MQ⊥PN,垂足为Q,

∴PM=PN=MN=4,NQ=NG=2,MQ=a,∠QMN=30°,∠PNM=60°,

∵NG=NQ,

∴∠G=∠QMN,

∴QG=MQ=a,

∵△MNP的周长为12,

∴MN=4,NG=2,

∴△MGQ周长是6+2a.

故选:D.【题目点拨】本题考查了等边三角形的判定与性质,难度一般,认识到△MNP是等边三角形是解决本题的关键.6、A【分析】=3,9的算术平方根等于3,需注意的是算术平方根必为非负数,即可得出结果.【题目详解】=3故选:A【题目点拨】本题主要考查了算术平方根的定义,一个正数只有一个算术平方根,1的算术平方根是1.7、B【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各组数据偏离平均数越小,即波动越小,数据越稳定.据此求解即可.【题目详解】解:∵甲的方差是0.25,乙的方差是0.21,∴乙的方差<甲的方差,∴乙的成绩比甲稳定.故选:B.【题目点拨】本题考查了根据方差的意义在实际问题中的简单应用,明确方差的意义是解题的关键.8、B【分析】由图可得,第1个“上”字中的棋子个数是6;第2个“上”字中的棋子个数是10;第3个“上”字中的棋子个数是14;…进一步发现规律:第n个“上”字中的棋子个数是(4n+2);由此求得问题答案.【题目详解】解:第1个“上”字中的棋子个数是6=4+2;

第2个“上”字中的棋子个数是10=4×2+2;

第3个“上”字中的棋子个数是14=4×3+2;

第n个“上”字中的棋子个数是(4n+2);

所以第10个“上”字需用棋子的数量是4×10+2=42个.

故选:B.【题目点拨】本题主要考查了图形的变化规律,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解.9、C【解题分析】先根据反比例函数经过点(2,-3)求出k的值,再对各选项进行逐一分析即可.【题目详解】∵反比例函数经过点(2,-3),∴k=2×-3=-1.A、∵2×3=1≠-1,∴此点不在函数图象上,故本选项错误;B、∵1×1=1≠-1,∴此点不在函数图象上,故本选项错误;C、∵(-1)×1=-1,∴此点在函数图象上,故本选项正确;D、∵(-2)×(-3)=1≠-1,∴此点不在函数图象上,故本选项错误.故选C.【题目点拨】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.10、C【解题分析】延长BD交AC于点E,则可知△ABE为等腰三角形,则S△ABD=S△ADE,S△BDC=S△CDE,可得出S△ADC=S△ABC.【题目详解】解:如图,延长BD交AC于点E,∵AD平分∠BAE,AD⊥BD,∴∠BAD=∠EAD,∠ADB=∠ADE,在△ABD和△AED中,,∴△ABD≌△AED(ASA),∴BD=DE,∴S△ABD=S△ADE,S△BDC=S△CDE,∴S△ABD+S△BDC=S△ADE+S△CDE=S△ADC,∴S△ADC=S△ABC=×12=6(m2),故答案选C.【题目点拨】本题主要考查等腰三角形的判定和性质,由BD=DE得到S△ABD=S△ADE,S△BDC=S△CDE是解题的关键.二、填空题(每小题3分,共24分)11、3或或2或1【分析】根据矩形的性质可得∠A=90°,BC=AD=1,然后根据等腰三角形腰的情况分类讨论,根据勾股定理和垂直平分线等知识即可求解.【题目详解】解:∵四边形ABCD是矩形,∴∠A=90°,BC=AD=1,分三种情况:①BP=BQ=5时,AP===3;②当PB=PQ时,作PM⊥BC于M,则点P在BQ的垂直平分线时,如图所示:∴AP=BQ=;③当QP=QB=5时,作QE⊥AD于E,如图所示:则四边形ABQE是矩形,∴AE=BQ=5,QE=AB=4,∴PE===3,∴AP=AE﹣PE=5﹣3=2;④当点P和点D重合时,∵CQ=3,CD=4,∴根据勾股定理,PQ=5=BQ,此时AP=AD=1,综上所述,当为等腰三角形时,AP的长为3或或2或1;故答案为:3或或2或1.【题目点拨】此题考查的是矩形的性质、等腰三角形的性质和勾股定理,掌握矩形的性质、等腰三角形的性质、分类讨论的数学思想和勾股定理是解题关键.12、【分析】根据题意,利用不等式组取解集的方法即可得到m的范围.【题目详解】解:由题知不等式为,∵不等式有解,∴,∴,故答案为.【题目点拨】此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.13、55°【分析】根据∠BAC=∠DAE能够得出∠1=∠EAC,然后可以证明△BAD≌△CAE,则有∠2=∠ABD,最后利用∠3=∠1+∠ABD可求解.【题目详解】∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.【题目点拨】本题主要考查全等三角形的判定及性质,三角形外角性质,掌握全等三角形的判定方法及性质是解题的关键.14、(27,0)【分析】利用勾股定理和坐标轴上点的坐标特征分别求出P1、P2、P3的坐标,然后利用坐标变换规律写出P4,P5,P6的坐标.【题目详解】解:由题意知OA=1,OB=,则AB=AP1==2,∴点P1(0,3),∵BP1=BP2==2,∴点P2(3,0),∵P1P3=P1P2==6,∴点P3(0,9),同理可得P4(9,0),P5(0,27),∴点P6的坐标是(27,0).故答案为(27,0).【题目点拨】本题考查了作图-复杂作图和规律探索,复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.也考查了从特殊到一般的方法解决规律型问题的方法.15、(x﹣2)(x﹣3)【解题分析】原式提取公因式即可得到结果.【题目详解】原式=x(x−2)−3(x−2)=(x−2)(x−3),故答案为(x−2)(x−3)【题目点拨】考查因式分解,掌握提取公因式法是解题的关键.16、且【分析】在方程的两边同时乘以2(x-1),解方程,用含a的式子表示出x的值,再根据x≥0,且x≠1,求解即可.【题目详解】解:两边同时乘以2(x-1),得:4x-2a=x-1,解得x=,由题意可知,x≥0,且x≠1,∴,解得:且,故答案为:且.【题目点拨】本题主要考查分式方程的解,熟练应用并准确计算是解题的关键.17、4或6【分析】求出BD,根据全等得出要使△BPD与△CQP全等,必须BD=CP或BP=CP,得出方程12=16-4x或4x=16-4x,求出方程的解即可.【题目详解】设经过x秒后,使△BPD与△CQP全等,∵AB=AC=24厘米,点D为AB的中点,∴BD=12厘米,∵∠ABC=∠ACB,∴要使△BPD与△CQP全等,必须BD=CP或BP=CP,即12=16-4x或4x=16-4x,x=1,x=2,x=1时,BP=CQ=4,4÷1=4;x=2时,BD=CQ=12,12÷2=6;即点Q的运动速度是4或6,故答案为:4或6【题目点拨】本题考查了全等三角形的判定的应用,关键是能根据题意得出方程.18、1或6或【分析】方程两边都乘以,把方程化为整式方程,再分两种情况讨论即可得到结论.【题目详解】解:当时,显然方程无解,又原方程的增根为:当时,当时,综上当或或时,原方程无解.故答案为:1或6或.【题目点拨】本题考查的是分式方程无解的知识,掌握分式方程无解时的分类讨论是解题的关键.三、解答题(共66分)19、【分析】先去分母,方程的两边同乘(x﹣1),再展开计算,化简求解出未知数,最后验算结果即可.【题目详解】方程的两边同乘(x﹣1),得:x-2=4(x﹣1),即:解得:,检验:当时,x﹣1≠0,∴原分式方程的解为.【题目点拨】本题主要考车了解方程的相关计算,注意不能把“解”子漏掉,最后得到的结果代入检验原式的分母是否为0,如果为零,则把该结果舍去.20、(1)见解析;(2)∠BPQ=60°【分析】(1)根据等边三角形的性质,通过全等三角形的判定定理SAS证得结论;

(2)利用(1)中的全等三角形的对应角相等和三角形外角的性质求得∠BPQ=60°;【题目详解】(1)证明:∵△ABC为等边三角形,

∴AB=CA,∠BAE=∠C=60°,在△AEB与△CDA中,∴△AEB≌△CDA(SAS);(2)解:由(1)知,△AEB≌△CDA,则∠ABE=∠CAD,

∴∠BAD+∠ABD=∠BAD+∠CAD=∠BAC=60°,

∴∠BPQ=∠BAD+∠ABD=60°;【题目点拨】本题考查了全等三角形的判定与性质、等边三角形的性质,在判定三角形全等时,关键是选择恰当的判定条件.21、(1)文学书的单价为40元/本,科普书的单价为1元/本;(2)购进1本文学书后最多还能购进2本科普书.【解题分析】(1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,根据数量=总价÷单价结合用800元购进的文学书本数与用1200元购进的科普书本数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进m本科普书,根据总价=文学书的单价×购进本数+科普书的单价×购进本数结合总价不超过5000元,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论.【题目详解】解:(1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,依题意,得:800x解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x+20=1.答:文学书的单价为40元/本,科普书的单价为1元/本.(2)设购进m本科普书,依题意,得:40×1+1m≤5000,解得:m≤431∵m为整数,∴m的最大值为2.答:购进1本文学书后最多还能购进2本科普书.【题目点拨】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.22、(1);(2)-1或1;(3)【分析】(1)图中阴影部分的面积等于大正方形的面积减去中间空白正方形的面积,也等于4个长为a,宽为b的长方形的面积,即可得出结论;(2)将,代入(1)中等式即可;(3)将的两边同时除以x并整理可得,然后根据(1)中等式可得,从而得出结论.【题目详解】解:(1)图中大正方形的边长为,中间空白正方形的边长为,所以阴影部分的面积为:;阴影部分也是由4个长为a,宽为b的长方形组成,所以阴影部分的面积为:4ab∴故答案为:;(2)将,代入(1)中等式,得解得:-1或1;(3)∵有意义的条件为:x≠0将的两边同时除以x,得∴由(1)中等式可得将代入,得变形,得【题目点拨】此题考查的是利用阴影部分的不同求法推导等式,掌握阴影部分的面积的不同求法和等式的变形及应用是解决此题的关键.23、(1);(2);(3)等腰直角三角形,证明见详解.【分析】(1)证,,.(2)由可知作的一半的面积与相等,可作一条过AC的中点的平行于AB的直线将会交于M点,证,,.(3)E、G分别为的中点,知,,,为矩形,,,,可判断,即可得的形状.【题目详解】(1)∵的图象与轴、轴分别交于点、,∴可得,∵,∴,∵,∴,在与中,,∴;∴,;∴;∴(2)如下图作一条过AC的中点H点的平行于AB的直线将会交于一点,由A、C点可得H点坐标,∵,∴,∴与的高相等,即过H点的平行于AB的直线将会交于M点∵,∴∵,∴,∴,如下图过H点作的垂线交于I点,,得,,在与中,,∴;∴,∴;∴(3)∵E、G分别为的中点,∴,∵,∴为矩形;∴,,∵,,,∴,,得,∴为等腰直角三角形;【题目点拨】一次函数、三角形全等证明、矩形证明这些跨章节知识点的应用,需要对知识的融会贯通.24、(1)作图见解析;(2)作图见解析;(3);.【分析】(1)利用点平移的坐标变换特征得出、、的位置,然后描点连线即可;(2)利用关于y轴对称点的性质得出、、的位置,然后描点连线即可;(3)利用点平移的坐标变换特征和关于y轴对称点的性质即可写出,的坐标.【题目详解】(1)如图,为所作;(2)如图,为所作;(3)点向

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论