2021-2022学年贵州省毕节市高二上学期期末教学质量检测数学(理)试题_第1页
2021-2022学年贵州省毕节市高二上学期期末教学质量检测数学(理)试题_第2页
2021-2022学年贵州省毕节市高二上学期期末教学质量检测数学(理)试题_第3页
2021-2022学年贵州省毕节市高二上学期期末教学质量检测数学(理)试题_第4页
2021-2022学年贵州省毕节市高二上学期期末教学质量检测数学(理)试题_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

20212022学年贵州省毕节市高二上学期期末教学质量检测数学(理)试题一、单选题1.命题“,”的否定是(

)A., B.,C., D.,【答案】D【分析】根据含一个量词的命题的否定方法:修改量词,否定结论,直接得到结果.【详解】命题“,”的否定是“,”.故选:D.2.已知集合,,则(

)A. B.C. D.【答案】C【分析】解不等式求得集合,根据函数定义域的求法可求得集合,由交集定义可得结果.【详解】由得:,;由得:且,;.故选:C.3.变量,之间有如下对应数据:3456713111087已知变量与呈线性相关关系,且回归方程为,则的值是(

【答案】D【分析】将样本中心点代入回归方程后求解【详解】,,将样本中心点代入回归方程,得.故选:D4.在空间中,“直线与没有公共点”是“直线与异面”的(

)A.必要不充分条件 B.充要条件C.充分不必要条件 D.既不充分也不必要条件【答案】A【分析】由于在空间中,若直线与没有公共点,则直线与平行或异面,再根据充分、必要条件的概念判断,即可得到结果.【详解】在空间中,若直线与没有公共点,则直线与平行或异面.故“直线与没有公共点”是“直线与异面”的必要不充分条件.故选:A.5.设P为椭圆C:上一点,,分别为左、右焦点,且,则(

)A. B. C. D.【答案】B【分析】根据椭圆的定义写出,再根据条件即可解得答案.【详解】根据P为椭圆C:上一点,则有,又,所以,故选:B.6.将函数的图象向左平移个单位长度后,得到函数的图象,则(

)A. B.C. D.【答案】A【分析】先化简函数表达式,然后再平移即可.【详解】函数的图象向左平移个单位长度后,得到的图象.故选:A7.刘老师在课堂中与学生探究某个圆时,有四位同学分别给出了一个结论.甲:该圆经过点.乙:该圆的半径为.丙:该圆的圆心为.丁:该圆经过点,如果只有一位同学的结论是错误的,那么这位同学是(

)A.甲 B.乙 C.丙 D.丁【答案】D【分析】分别假设甲、乙、丙、丁是错误的,看能否推出矛盾,进而推导出答案.【详解】假设甲的结论错误,根据丙和丁的结论,该圆的半径为6,与乙的结论矛盾;假设乙的结论错误,圆心到点的距离与圆心到点的距离不相等,不成立;假设丙的结论错误﹐点到点的距离大于,不成立;假设丁的结论错误,圆心到点的距离等于,成立.故选:D8.某汽车制造厂分别从A,B两类轮胎中各随机抽取了6个进行测试,下面列出了每一个轮胎行驶的最远里程(单位:).A类轮胎:94,96,99,99,105,107.B类轮胎:95,95,98,99,104,109.根据以上数据,下列说法正确的是()A.A类轮胎行驶的最远里程的众数小于B类轮胎行驶的最远里程的众数B.A类轮胎行驶的最远里程的极差等于B类轮胎行驶的最远里程的极差C.A类轮胎行驶的最远里程的平均数大于B类轮胎行驶的最远里程的平均数D.A类轮胎的性能更加稳定【答案】D【分析】根据众数、极差、平均数和方差的定义以及计算公式即可求解.【详解】解:对A:A类轮胎行驶的最远里程的众数为99,B类轮胎行驶的最远里程的众数为95,选项A错误;对B:A类轮胎行驶的最远里程的极差为13,B类轮胎行驶的最远里程的极差为14,选项B错误.对C:A类轮胎行驶的最远里程的平均数为,B类轮胎行驶的最远里程的平均数为,选项C错误.对D:A类轮胎行驶的最远里程的方差为,B类轮胎行驶的最远里程的方差为,故A类轮胎的性能更加稳定,选项D正确.故选:D.9.若正整数N除以正整数m后的余数为n,则记为,如.如图所示的程序框图的算法源于我国古代闻名中外的“中国剩余定理”.执行该程序框图,则输出的i等于(

)A.7 B.10 C.13 D.16【答案】C【分析】根据“中国剩余定理”,进而依次执行循环体,最后求得答案.【详解】由题意,第一步:,余数不为1;第二步:,余数不为1;第三步:,余数为1,执行第二个判断框,余数不为2;第四步:,执行第一个判断框,余数为1,执行第二个判断框,余数为2.输出的i值为13.故选:C.10.定义在R上的偶函数在上单调递增,且,则满足的x的取值范围是(

)A. B. C. D.【答案】B【分析】,再根据函数的奇偶性和单调性可得或,解之即可得解.【详解】解:,由题意可得或即或,解得或.故选:B.11.已知,则点到平面的距离为(

)A. B. C. D.【答案】A【分析】根据给定条件求出平面的法向量,再利用空间向量求出点到平面的距离.【详解】依题意,,设平面的法向量,则,令,得,则点到平面的距离为,所以点到平面的距离为.故选:A12.双曲线型自然通风塔的外形是双曲线的一部分绕其虚轴旋转所成的曲面,如图所示,它的最小半径为米,上口半径为米,下口半径为米,高为24米,则该双曲线的离心率为()A.2 B. C. D.【答案】A【分析】以的中点О为坐标原点,建立平面直角坐标系,设双曲线的方程为,设,,代入双曲线的方程,求得,得到,进而求得双曲线的离心率.【详解】以的中点О为坐标原点,建立如图所示的平面直角坐标系,则,设双曲线的方程为,则,可设,,又由,在双曲线上,所以,解得,,即,所以该双曲线的离心率为.故选:A.二、填空题13.抛物线的焦点坐标为________.【答案】【分析】利用焦点坐标为求解即可【详解】因为,所以,所以焦点的坐标为,故答案为:.14.在区间上随机取1个数,则取到的数小于2的概率为___________.【答案】【分析】根据几何概型计算公式进行求解即可.【详解】设“区间上随机取1个数”,对应集合为,区间长度为3,“取到的数小于2”,对应集合为,区间长度为1,所以.故答案为:15.若是直线外一点,为线段的中点,,,则______.【答案】【分析】根据题意得到,进而得到,求得的值,即可求解.【详解】因为为线段的中点,所以,所以,又因为,所以,所以.故答案为:.16.如图,在四棱锥中,是边长为4的等边三角形,四边形ABCD是等腰梯形,,,,若四棱锥的体积为24,则四棱锥外接球的表面积是___________.【答案】【分析】根据球的截面圆圆心与球心的连线垂直截面可确定垂直平面ABCD,构造直角三角形求解球的半径即可得解.【详解】如图,分别取BC,AD的中点,E,连接PE,,,.因为是边长为4的等边三角形,所以.因为四边形ABCD是等腰梯形,,,,所以,.因为四棱锥的体积为24,所以,所以.因为E是AD的中点,所以.因为,所以平面ABCD.因为,所以四边形ABCD外接圆的圆心为,半径.设四棱锥外接球的球心为O,连接,OP,OB,过点О作,垂足为F.易证四边形是矩形,则,.设四棱锥外接球的半径为R,则,即,解得,故四棱锥外接球的表面积是.故答案为:三、解答题17.设:函数的定义域为;:不等式对任意的恒成立.(1)如果是真命题,求实数的取值范围;(2)如果“”为真命题,“”为假命题,求实数的取值范围.【答案】(1)(2)【分析】(1)由对数函数的性质,转化为对任意的恒成立,结合二次函数的性质,即可求解;(2)利用基本不等式,求得当命题是真命题,得到,结合“”为真命题,“”为假命题,分类讨论,即可求解.【详解】(1)解:因为是真命题,所以对任意的恒成立,当时,不等式,显然在不能恒成立;当时,则满足解得,故实数的取值范围为.(2)解:因为,所以,当且仅当时,等号成立.若是真命题,则;因为“”为真命题,“”为假命题,所以与一真一假.当真假时,所以;当假真时,所以,综上,实数的取值范围为.18.已知锐角的内角A,B,C的对边分别为a,b,c,且.(1)求A;(2)若,求外接圆面积的最小值.【答案】(1)(2)【分析】(1)利用二倍角公式将已知转化为正弦函数,解一元二次方程可得;(2)由余弦定理和(1)可求a的最小值,再由正弦定理可得外接圆半径的最小值,然后可解.【详解】(1)因为,所以,解得或(舍去),又为锐角三角形,所以.(2)因为,当且仅当时,等号成立,所以.外接圆的半径,故外接圆面积的最小值为.19.某中学共有名学生,其中高一年级有名学生,为了解学生的睡眠情况,用分层抽样的方法,在三个年级中抽取了名学生,依据每名学生的睡眠时间(单位:小时),绘制出了如图所示的频率分布直方图.(1)求样本中高一年级学生的人数及图中的值;(2)估计样本数据的中位数(保留两位小数);(3)估计全校睡眠时间超过个小时的学生人数.【答案】(1)样本中高一年级学生的人数为,;(2);(3).【分析】(1)利用分层抽样可求得样本中高一年级学生的人数,利用频率直方图中所有矩形的面积之和为可求得的值;(2)利用中位数左边的矩形面积之和为可求得中位数的值;(3)利用频率分布直方图可计算出全校睡眠时间超过个小时的学生人数.【详解】(1)解:样本中高一年级学生的人数为.,解得.(2)解:设中位数为,前两个矩形的面积之和为,前三个矩形的面积之和为,所以,则,得,故样本数据的中位数约为.(3)解:由图可知,样本数据落在的频率为,故全校睡眠时间超过个小时的学生人数约为.20.在数列中,,且.(1)证明;数列是等比数列.(2)若,求数列的前n项和.【答案】(1)证明见解析;(2).【分析】(1)根据递推公式,结合等差数列的定义、等比数列的定义进行证明即可;(2)运用裂项相消法进行求解即可.【详解】(1)∵,∴,又∵,∴,∴数列是首项为0,公差为1的等差数列,∴,∴,从而,∴数列是首项为2,公比为2的等比数列;(2)由(1)知,则,∴,∴.21.如图,在正三棱柱中,,,,分别为,,的中点.(1)证明:.(2)求平面与平面所成锐二面角的余弦值.【答案】(1)证明见解析(2)【分析】(1)由已知,以为坐标原点,建立空间直角坐标系,分别表示出B、D、E、F点的坐标,然后通过计算向量数量积来进行证明;(2)由第(1)建立的空间直角坐标系,分别表示出对应点的坐标,然后计算平面与平面的法向量,然后通过法向量去计算两平面所成的锐二面角即可.【详解】(1)如图,以为坐标原点,以,的方向分别为,轴的正方向建立如图所示的空间直角坐标系,由,,,分别为,,的中点,则,,.证明:因为,,所以,所以.(2)设平面的法向量为,因为,,所以,令,得.设平面的法向量为,则令,得.因为所以平面与平面所成锐二面角的余弦值为.22.已知分别是椭圆的左、右焦点,点是椭圆上的一点,且的面积为1.(1)求椭圆的短轴长;(2)过原点的直线与椭圆交于两点,点是椭圆上的一点,若为等边三角形,求的取值范围.【答案】(1)2(2)【分析】(1)根据题意表示出的面积,即可求得结果;(2)分类讨论直线斜率情况,然后根据是等边三角形,得到,联

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论