桑树坪煤矿12 Mta新井设计_第1页
桑树坪煤矿12 Mta新井设计_第2页
桑树坪煤矿12 Mta新井设计_第3页
桑树坪煤矿12 Mta新井设计_第4页
桑树坪煤矿12 Mta新井设计_第5页
已阅读5页,还剩128页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本科生毕业设计(论文)桑树坪煤矿桑树坪煤矿1.2Mt/a新井设计煤与瓦斯共采技术现状及综述题目:姓名:学号:班级:中国矿业大学本科生毕业设计姓名:学号:学院:矿业工程学院专业:采矿工程专业设计题目:桑树坪煤矿1.2Mt/a新井设计专题:指导教师:职称:教授中国矿业大学毕业设计任务书学院矿业工程学院专业年级采矿工程专业2007级学生姓名徐跃任务下达日期:年月日毕业设计日期:年月日至年月日毕业设计题目:桑树坪煤矿1.2Mt/a新井设计毕业设计专题题目:煤与瓦斯共采技术现状及综述毕业设计主要内容和要求:院长签字:指导教师签字:

中国矿业大学毕业设计指导教师评阅书指导教师评语(①基础理论及基本技能的掌握;②独立解决实际问题的能力;③研究内容的理论依据和技术方法;④取得的主要成果及创新点;⑤工作态度及工作量;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等):成绩:指导教师签字:年月日

中国矿业大学毕业设计评阅教师评阅书评阅教师评语(①选题的意义;②基础理论及基本技能的掌握;③综合运用所学知识解决实际问题的能力;③工作量的大小;④取得的主要成果及创新点;⑤写作的规范程度;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等):成绩:评阅教师签字:年月日

中国矿业大学毕业设计答辩及综合成绩答辩情况提出问题回答问题答辩委员会评语及建议成绩:答辩委员会主任签字:年月日学院领导小组综合评定成绩:学院领导小组负责人:年月日摘要本设计包括三个部分:一般部分、专题部分和翻译部分。一般部分为桑树坪煤矿1.20Mt/a新井设计。桑树坪煤矿位于陕西省韩城市境内,从下峪口至桑树坪的铁路运煤专线与西候线接轨,交通便利。井田走向长度约7.01km,倾向长度约2.36km,面积约14.82km2。主采煤层为3号煤层,平均倾角为6°,平均厚度为6.3m。井田工业储量为387.84Mt,可采储量为273.52Mt,矿井服务年限为58a。矿井正常涌水量为532m3/h,最大涌水量为589.7m3/h。矿井相对瓦斯涌出量为17.1m3/t,属于高瓦斯矿井。根据井田地质条件,提出四个技术上可行的开拓方案。方案一:双斜井中央并列式通风;方案二:双立井石门风井通风;方案三:双斜井两翼对角式通风;方案四:双立井两翼对角式通风。通过技术经济比较,最终确定方案一为最优方案。设计首采区采用带区准备方式,工作面长度210m,采用大采高采煤法,沿空掘巷,矿井年工作日为300d,工作制度为“四六制”。大巷采用胶带输送机运煤,辅助运输采用矿车运输。矿井通风方式为中央并列式。专题部分题目:煤与瓦斯共采技术现状综述,煤与瓦斯共采技术实现工作面Y型通风,根本上解决了上隅角瓦斯积聚难题,利于实现高浓度瓦斯抽采,有效解决了工作面的瓦斯超限问题,成倍提高我国高瓦斯难抽放煤层工作面的单产水平。是绿色采矿的发展方向,在技术上和经济上具有很大的优越性。翻译部分题目:Analyticalmodelsforrockbolts.关键词:桑树坪煤矿;斜井;立井;带区布置;大采高采煤法;中央并列式;沿空掘巷

ABSTRACTThisdesigncanbedividedintothreesections:generaldesign,monographicstudyandtranslationofanacademicpaper.Thegeneraldesignisabouta1.20Mt/anewundergroundminedesignofSangshupingcoalmine.SangshupingcoalmineliesinHanchengCity,Shanxiprovince.AsXiayukourailwayrunsinthewestoftheminefieldandXihourailwayrunsintheeastoftheminefield,thetrafficisconvenient.It’sabout7.01kmonthestrikeand2.36kmonthedip,withthe14.82km2totalhorizontalarea.Theminablecoalseamis3withanaveragethicknessof6.3mandanaveragedipof6°.Theprovedreservesofthiscoalmineare387.84Mtandtheminablereservesare273.52Mt,withaminelifeof58a.Thenormalmineinflowis532m3/handthemaximummineinflowis589.7m3/h.Theminegasemissionrateis17.1m3/t,whichbelongstohighgasmine.Minegeologicalconditionsundertheproposeddevelopmentschemesforthefourtechnicallyfeasible.OptionOne:Twoparallelinclinedcentralventilation;OptionII:Two-shaftventilationshaftventilationShihmen;OptionThree:Twowingsoftheangleofventilationshaft;programfour:twowingsoftheangleofventilationshaft.Throughtechnicalandeconomiccomparisonofafinalizedplanfortheoptimalsolution.Designoftheminingareapreparedbywayofbands,facelengthof210m,high-miningmethodusinglargeminingalonggoaf,workingasamineof300d,theworksystemas"forty-sixsystem."Roadwaybybeltconveyortotransportcoal,auxiliarytransportbytramcartransport.Mineventilationforthecentralparallel.Specialsectiontopic:coalandgasextractiontechnologystatusreview,coalandgasextractiontechnologyforfaceY-ventilation,afundamentalsolutiontotheproblemonthecornergasaccumulation,conducivetohighconcentrationsofgasextraction,aneffectivesolutiontothefaceGasgaugeproblems,doubledandredoubleddifficultdrainageofhighgasyieldscoalface.GreenminingdevelopmentinthetechnicalandeconomicadvantagesofgreatTranslationofpartofthesubject:theprocessofcirculartunnelinthereliefofthenumericalsimulationofrockburstoccurredKeywords:SangshupingCoal;shaft;shaft;bandarrangement;largeminingheightofcoalmining;centralparallel;alonggoaf第页Analyticalmodelsforrockbolts.C.L*,StillborgAbstractThreeanalyticalmodelshavebeendevelopedforrockbolts:oneforboltssubjectedtoconcentratedpullloadinpullouttests,oneforboltsinstalledinuniformlydeformedrockmasses,andoneforboltssubjectedtotheopeningofindividualrockjoints.Thedevelopmentofthemodelshasbeenbasedonthedescriptionofthemechanicalcouplingattheinterfacebetweentheboltandthegroutmediumforgroutedbolts,orbetweentheboltandtherockforfrictionallycoupledbolts.Forrockboltsinthepullouttests,theshearstressoftheinterfacesexponentiallywithincreasingdistancefromthepointofloadingwhenthedeformationiscompatibleacrosstheinterface.Decouplingmaystartfirstattheloadingpointwhentheappliedloadislargeenoughandthenpropagatetowardsthefarendoftheboltwithafurtherincreaseintheappliedload.Themagnitudeoftheshearstressonthedecoupledboltsectiondependsonthecouplingmechanismattheinterface.Forfullygroutedbolts,theshearstressonthedecoupledsectionislowerthanthepeakshearstrengthoftheinterfacewhileforfullyfrictionallycoupledboltsifisapproximatelythesameasthepeakshearstrength.Forrockboltsinstalledinuniformlydeformedrock,theloadingprocessoftheboltsduetorockdeformationhasbeentakenintoaccountindevelopingthemodel.Modelsimulationsconfirmthepreviousfindingsthataboltinsituhasapick-uplength,ananchorlengthandneutralpoint.Itisalsorevealedthatthefaceplateplaysasignificantroleinenhancingthereinforcementeffect.Injointedrockmasses,severalaxialstresspeaksmayoccuralongtheboltbecauseoftheopeningofrockjointsintersectingthebolt.1.IntroductionRockboltshavebeenwidelyusedforrockreinforcementincivilandminingengineeringforalongtime.Boltsreinforcerockmassesthroughrestrainingthedeformationwithintherockmasses.Inordertoimproveboltingdesign,itisnecessary:tohaveagoodunderstandingofthebehaviourofrockboltsindeformedrockmasses.Thiscanbeacquiredthroughfieldmonitoring,laboratorytests,numericalmodelingandanalyticalstudies.Sincethe1970s,numerousresearchershavecarriedoutfieldmonitoringworkonrockboltsinstalledinvariousrockformations.FreemanperformedpioneeringworkinstudyingtheperformanceoffullygroutedrockboltsintheKielderexperimentalrunnel.Hemonitoredboththeloadingprocessoftheboltsandthedistributionofhismonitoringdata,heproposedtheconceptsof“neutralpoint”“pick-uplength”and“anchorlength”.Attheneutralpoint,theshearstressattheinterfacebetweentheboltandthegroutmediumiszero,whilethetensileaxialloadofthebolthasapeakvalue.Thepick-uplengthreferstothesectionoftheboltfromthenearendofthebolt(onthetunnelwall)totheneutralpoint.Theshearstressesonthissectionoftheboltpickuptheloadfromtherockanddragthebolttowardsthetunnel.Theanchorlengthreferstothesectionoftheboltfromtheneutralpointtothefarendofthebolt(itsseatingdeepintherock).Theshearstressesonthissectionoftheboltanchorthebolttotherock.Theseconceptsclearlyoutlinethebehaviouroffullygroutedrockboltsinadeformedrockformation.BjonfotandStephansson’sworkdemonstratedthatinjointedrockmassestheremayexistnotonlyonebutseveralneutralpointsalongtheboltbecauseoftheopeningdisplacementofindividualjoints.Pullouttestsareusuallyusedtoexaminetheanchoringcapacityofrockbolts.Agreatnumberofpullouttestshavebeenconductedsofarinvarioustypesofrocks.Farmercarriedoutfundamentalworkinstudyingthebehaviourofboltsundertensileloading.Hissolutionpredictsthattheaxialstressofthebolt(alsotheshearstressattheboltinterface)willdecreaseexponentiallyfromthepointofloadingtothefarendoftheboltbeforedecouplingoccurs.Fig.1(a)illustratestheresultsofatypicalpullouttest.Curvearepresentsthedistributionoftheaxialstressalongtheboltunderarelativelylowappliedload,atwhichthedeformationiscompatibleonbothsidesoftheboltinterface.Curvebrepresentstheaxialstressalongtheboltatarelativelyhighappliedload,atwhichdecouplinghasoccurredatpartoftheboltinterface.Fig.1(b)showstheaxialstressalongarockboltinstalledinanundergroundminedrift.Itisseenfromthisfigurethatthedistributionoftheaxialstressalongthesectionclosetotheboreholecollariscompletelydifferentfromthatinpullouttests.However,alongthesectiontothefarendofthebolt,thestressvariessimilarlytothatinpullouttests.ThereasonFig.1Distributioniftheaxialstress(a)alongagroutedsteelbarduringpullouttest,afterHawkesandEvan,and(b)alongagroutedrockboltinsituaftersunfortheseresultsisthatboltsinsituhaveapick-uplengthandananchorlength,whileboltsinpullouttestsonlyhaveananchorlength.Itisthoughtthattherelativemovementbetweentherockandtheboltiszeroattheneutralpoint.InthesolutionbyTaoandChen,thepositionoftheneutralpointdependsonlyontheradiusofthetunnelandthelengthofthebolt.ThatsolutionwasimplementedintheanalyticalmodelscreatedbyIndraratnaandKaiserandHyettet.al.ItseemsthatTaoandChen’ssolutionisvalidonlywhenthedeformationiscompatibleacrosstheboltinterface.Whendecouplingoccurs,thepositionoftheneutralpointisobviouslyalsorelatedtotheshearstrengthoftheinterface.Fieldmonitoringandpullouttestshaveindicatedtwofactsconcerningtheloadingofarockboltinsitu:(1)rockdeformationappliedaloadonthepick-upsectionofthebolt;(2)theloadonthepick-upsectiondragstheanchorsectionofthebolttowardstheundergroundopening.Thesetwofactsmustbetakenintoaccountindevelopinganalyticalmodelsforrockbolts.Theaimofthispaperistodevelopanalyticalmodelsforfullycoupledrockbolts.Amodelforrockboltsinpullouttestsisintroducedfirst,togetherwithadescriptionofthetheoreticalbackground,thedevelopmentofthemodelandanillustrativeexample.Twomodelsforrockboltsinsituarethenpresented,oneinrockmasses.Thedetailsofthedevelopmentofthemodelsaresummarizedintheappendices.2.CouplingbetweentheboltandtherockWindsorproposedtheconceptthatareinforcementsystemcomprisesfourprincipalcomponents:therock,thereinforcingelement,theinternalfixtureandtheexternalfixture.Forreinforcementwithabolt,thereinforcingelementreferstotheboltandtheexternalfixturereferstothefaceplateandnut.Theinternalfixtureiseitheramedium,suchascementmortarorresinforgroutedbolts,oramechanicalactionlike“friction”attheboltinterfaceforfrictionallycoupledbolts.Theinternalfixtureprovidesacouplingconditionattheinterface.Withreferencetothecomponentofinternalfixture,Windsorclassifiedthecurrentreinforcementdevicesintothreegroups:“continuouslymechanicallycoupled(CMC)”,“continuouslyfrictionallycoupled(CFC)”,“discretelymechanicallyorfrictionallycoupled(DMFC)”systems.Accordingtothisclassificationsystem,cementandresin-groutedboltsbelongtotheCMCsystem,whileSplitsetandSwellexboltsbelongtotheCFCsystem.Whenfullygroutedboltsaresubjectedtoapullload,failuremayoccurattheboltgroutinterface,inthegroutmediumoratthegroutrockinterfacedependingonwhichoneistheweakest.Forfullyfrictionallycoupledbolts,however,thereisonlyonepossibilityiffailuredecouplingattheboltrockinterface.Inthisstudyweconcentrateonthefailureattheinterfacebetweentheboltandthecouplingmedium(eitherthegroutmediumortherock).Ingeneral,theshearstrengthofaninterfacecomprisesthreecomponents:adhesion,mechanicalinterlockandfriction.Theyarelostinsequenceasthecompatibilityofdeformationislostacrosstheinterface.Theresultisadecouplingfrontthatattenuatesatanincreasingdistancefromthepointoftheappliedload.Thedecouplingfrontfirstmobilizestheadhesivecomponentofstrength,thenthemechanicalinterlockcomponentandfinallythefrictionalcomponent.Theshearstrengthoftheinterfacedecreasesduringthisprocess.Theshearstrengthafterthelossofsomeofthestrengthcomponentsiscalledtheresidualshearstrengthinthispaper.Forgroutedrockboltslikerebar,allthethreecomponentsofstrengthexistattheboltinterface.However,forthefullyfrictionallycoupledbolt,the“Splitset”bolt,onlyafrictioncomponentexistsattheboltinterface.ForSwellesbolts,mechanicalinterlockandfrictioncomprisethestrengthoftheinterface.3.Thetheoreticalbackgroundofrockboltsinpullouttests4.ConcludingremarksAnanalyticalmodelhasbeenestablishedforrockboltssubjectedtoapullloadinpullouttests.Decouplingstartsattheloadingpointandpropagatesalongtheboltwithanincreasingappliedload.Theshearstressatthedecoupledinterfaceislowerthantheultimateshearstressstrengthoftheinterfaceandevendropstozeroforfullygroutedbolts,whileitisapproximatelyatthesamemagnitudeastheultimateshearstressstrengthforfullyfrictionallycoupledinterfacedecreasesexponentiallywithincreasingdistancefromthedecouplingbolt.Twoanalyticalmodelshavebeendevelopedforrockboltsinsitu,oneforuniformrockdeformationandanotherfordiscretejointopening.Forrockboltsinsitu,themodelsconfirmthepreviousfindings:(i)inuniformlydeformedrockmasses,thebolthasapick-uplength,ananchorlengthandaneutralpoint;(ii)thefaceplateenhancesthereinforcementeffectthroughinducingadirecttensileloadintheboltandreducingtheshearstresscarriedontheboltsurface;(iii)injointedrockmasses,theopeningdisplacementofrockjointwillinduceaxialstresspeaksinthebolt.

中文译文锚杆的分析模型C.Li*,B.Stillborg摘要:有三种锚杆的分析模型发展了起来:一种是在拉断试验中,易受到集中拉力载荷影响作用的锚杆,一种是安装在均匀变形岩体中的锚杆,另一种是易受到单个岩石节理影响作用的锚杆。这种分析模型是在注浆锚杆的锚杆与注浆之间或者是磨擦式锚杆的锚杆与岩石之间接触面上的机械耦合作用描述的基础上建立起来的。对于拉断试验中的锚杆,当接触面上的变形较小时,锚杆表面上的剪切应力随着距加载点距离的增加而成指数减小。如果施加的载荷足够大时,耦合首先发生加载点处,然后随着载荷的增加而逐渐向锚杆的深处传播。锚杆耦合部分的剪切应力的大小取决于接触面上的机械耦合作用。对于全长锚固锚杆来说,耦合阶段的剪切应力比接触面上的剪切强度的峰值要小,然而对于磨擦式锚杆,剪切应力大致和剪切强度的峰值相同。安装在均匀变形岩体中的锚杆,在建立锚杆分析模型时,锚杆的加载过程要考虑到岩体的变形情况。模型的模拟实验证实了先前的研究结果,在软岩中的锚杆有传感长度,锚固段长度,和一个中性点。这个实验也说明了锚杆托盘在围岩加固的效果中起着一个非常重要的作用。在有节理的岩体中,由于岩石节理的自由变形作用,锚杆轴向可能会有几个应力峰值发生在锚杆的延伸方向。1、前言在很长一段时间来,锚杆广泛的应用于民用建筑和矿业工程的岩石加固。锚杆通过在岩体中抑制岩体的变形来加固围岩。为了提高锚杆支护的结构,必须对在变形岩体中的锚杆的作用变化过程有一个良好的认识。这些认识可以通过现场监测、实验室的试验、数字模拟和研究分析来获得。自从20世纪70年代来,在不同的岩石地层中进行了大量的锚杆现场监测的研究工作。一个自由人士在Kielder的试验巷道中,进行了大量关于注浆锚杆特性的研究工作。他监测了锚杆的加载过程和应力沿锚杆的分布情况。在他所监测数据的基础上,他提出了关于“传感长度”、“锚固长度”、“中性点”的概念。在中性点上,锚杆和注浆之间的接触面上的剪切应力为零,然而在该点其轴向载荷的张力是一个峰值。传感长度指的是从接近锚杆末端的地方(在巷道壁上)到中性点的一段距离。在锚杆这部分是其剪切应力来自于岩石的载荷,并把锚杆向巷道方向进行拖拉。锚固长度指的是从锚杆的中性点到锚杆深处(固定在岩石深度)的一部分锚杆。在这部分上的剪切应力将锚杆锚固在岩石上。以上这些概念清楚的指出了安装在已变形岩层中的锚杆的作用变化过程。Bjornfot和Stephansson的研究工作证明,在已有节理的岩体中,由于单个节理的由自变形,在沿锚杆的方向上可能不仅存在一个中性点而且有可能存在多个中性点。锚杆的拉断试验通常用来监测锚杆的锚固能力,在不同种类的岩石中已经进行了大量的这种拉断试验工作测试。一著名人士进行了大量的基础工作来研究在拉力负荷的张力作用下锚杆的作用变化过程。他的解析方法指出:在锚杆发生耦合以前,锚杆的轴向应力(也可能是锚杆接触表面上的剪切应力)从加载点到锚杆的深处呈指数减小的趋势。图1(a)说明了这种典型拉断试验的结果,曲线a表示的是在相对较低的载荷情况下,沿锚杆方向轴向应力的分布情况,在这个图中可以看出,在锚杆锚固界面的两则,其变形是相等的。曲线b表示的是在相对较高的载荷下,沿锚杆方向轴向应力的分布,在此图上,锚杆接触面上已经发生了耦合作用。图1(b)表示的是安装在地下煤矿的主水平巷中的锚杆上的轴向应力分布情况。我们可以从这个图上看出,在接近钻孔口附近的轴向应力分布情况与在拉断试验中的分布情况完全不同。然而,锚杆深处阶段部分的的应力变化与拉断试验中的结果相似。出现这种情况的原因是,在软岩中的锚杆有传感长度和锚固长度,然而在拉断试验中的锚杆仅有锚固长度。图1在拉断试验中,(a)轴向应力沿在Hawkes和Evans之后的全锚固锚杆和(b)Sun之后的加固锚杆的分布我们认为在锚杆中性点上,岩石和锚杆之间的相对移动为零。在陶和陈的分析方法中,中性点的位置仅仅取决于巷道的半径和锚杆的长度。这种解决方法完善了由Kaiser和Hyett发明的分析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论