




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省武汉市武汉七一中学2024届数学八上期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列各组数据中的三个数作为三角形的边长,其中不能构成直角三角形的是()A.3,4,5 B.,, C.8,15,17 D.5,12,132.若一次函数y=(k-3)x-1的图像不经过第一象限,则A.k<3 B.k>3 C.k>0 D.k<03.若的三条边长分别是、、,且则这个三角形是()A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形4.下列计算结果,正确的是()A. B.C. D.5.若有一个外角是钝角,则一定是()A.钝角三角形 B.锐角三角形C.直角三角形 D.以上都有可能6.如图,AC∥DF,AC=DF,下列条件不能使△ABC≌△DEF的是()A.∠A=∠D B.∠B=∠E C.AB=DE D.BF=EC7.下列各数中,是无理数的是()A.3.14 B. C.0.57 D.8.人数相同的八年级甲班、乙班学生,在同一次数学单元测试中,班级平均分和方差如下:分,(分),(分),则成绩较为稳定的班级是()A.甲班 B.乙班 C.两班成绩一样稳定 D.无法确定9.如图,.点,,,,在射线上,点,,,,在射线上,,,,均为等边三角形,若,则的边长为()A. B. C. D.10.化简的结果是()A. B. C. D.11.甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A. B.C. D.12.下列计算正确的是()A. B.(x+2)(x—2)=x—2 C.(a+b)=a+b D.(-2a)=4a二、填空题(每题4分,共24分)13.已知一次函数y=kx+b(k≠0)的图象经过点(0,2),且y随x的增大而增大,请你写出一个符合上述条件的函数关系式:_____.14.已知反比例函数,当时,的值随着增大而减小,则实数的取值范围__________.15.计算:____,_____.16.若多项式分解因式的结果为,则的值为__________.17.若,则=___________.18.计算:|-2|=______.三、解答题(共78分)19.(8分)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.我市某汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?20.(8分)先化简,再从不大于2的非负整数中选一个恰当的数作为的值代入求值.21.(8分)请把下列多项式分解因式:(1)(2)22.(10分)(1)如图1,已知,平分外角,平分外角.直接写出和的数量关系,不必证明;(2)如图2,已知,和三等分外角,和三等分外角.试确定和的数量关系,并证明你的猜想;(不写证明依据)(3)如图3,已知,、和四等分外角,、和四等分外角.试确定和的数量关系,并证明你的猜想;(不写证明依据)(4)如图4,已知,将外角进行分,是临近边的等分线,将外角进行等分,是临近边的等分线,请直接写出和的数量关系,不必证明.23.(10分)小红家有一个小口瓶(如图5所示),她很想知道它的内径是多少?但是尺子不能伸在里边直接测,于是她想了想,唉!有办法了.她拿来了两根长度相同的细木条,并且把两根长木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,你知道这是为什么吗?请说明理由.(木条的厚度不计)24.(10分)已知一次函数,当时,,则此函数与轴的交点坐标是__________.25.(12分)列方程或方程组解应用题:小马自驾私家车从地到地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多元,求新购买的纯电动汽车每行驶1千米所需的电费.26.某汽车制造厂生产一款电动汽车,计划一个月生产200辆.由于抽调不出足够的熟练工来完成电动汽车的安装,工厂决定招聘一些新工人,他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)若工厂现在有熟练工人30人,求还需要招聘多少新工人才能完成一个月的生产计划?
参考答案一、选择题(每题4分,共48分)1、B【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【题目详解】解:、,能构成直角三角形;、,不能构成直角三角形;、,能构成直角三角形;、,能构成直角三角形.故选:.【题目点拨】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.2、A【解题分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【题目详解】解:∵一次函数y=(k-1)x-1的图象不经过第一象限,且b=-1,
∴一次函数y=(k-1)x-1的图象经过第二、三、四象限,
∴k-1<0,
解得k<1.
故选A.【题目点拨】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.3、B【分析】根据非负性质求出a,b,c的关系,即可判断.【题目详解】∵,∴a=b,b=c,∴a=b=c,∴△ABC为等边三角形.故选B.【题目点拨】本题考查平方和绝对值的非负性,等边三角形的判定,关键在于利用非负性解出三边关系.4、C【分析】结合二次根式混合运算的运算法则进行求解即可.【题目详解】A.,故本选项计算错误;B.,故本选项计算错误;C.,故此选项正确;D.,故此选项计算错误故选:C.【题目点拨】本题考查了二次根式的混合运算,解答本题的关键在于熟练掌握二次根式混合运算的运算法则.5、D【分析】利用三角形的外角和相邻的内角互补即可得出答案.【题目详解】解:∵三角形的外角和相邻的内角互补,∴若有一个外角是钝角,则△ABC有一个内角为锐角,∴△ABC可能是钝角三角形,也可能是锐角三角形,也可能是直角三角形,故答案为:D.【题目点拨】本题考查了三角形的内角与外角的性质,解题的关键是熟知三角形的外角和相邻的内角互补的性质.6、C【分析】根据判定全等三角形的方法,分别进行判断,即可得到答案.【题目详解】解:∵AC∥DF,∴∠ACB=∠DFE,∵AC=DF;A、∠A=∠D,满足ASA,能使△ABC≌△DEF,不符合题意;B、∠B=∠E,满足AAS,能使△ABC≌△DEF,不符合题意;C、AB=DE,满足SSA,不能使△ABC≌△DEF,符合题意;D、BF=EC,得到BC=EF,满足SAS,能使△ABC≌△DEF,不符合题意;故选:C.【题目点拨】本题考查了全等三角形的判定方法,解题的关键是熟练掌握SAS、SSS、ASA、AAS、HL证明三角形全等.7、D【解题分析】根据无理数的定义,分别判断,即可得到答案.【题目详解】解:是无理数;3.14,,0.57是有理数;故选:D.【题目点拨】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.8、B【分析】根据两个班级的方差的大小即可得到答案【题目详解】∵分,(分),(分),且160<200,∴乙班的成绩较稳定,故选:B.【题目点拨】此题考查方差的大小,利用方差对事件做出判断.9、B【分析】根据等边三角形的性质和,可求得,进而证得是等腰三角形,可求得的长,同理可得是等腰三角形,可得,同理得规律,即可求得结果.【题目详解】解:∵,是等边三角形,∴,∴,∴,则是等腰三角形,∴,∵,∴=1,,同理可得是等腰三角形,可得=2,同理得、,根据以上规律可得:,即的边长为,故选:B.【题目点拨】本题属于探索规律题,主要考查了等边三角形的性质、等腰三角形的判定与性质,掌握等边三角形的三个内角都是60°、等角对等边和探索规律并归纳公式是解题的关键.10、B【分析】原式通分并利用同分母分式的加法法则计算即可求出值.【题目详解】原式故选:B.【题目点拨】本题考查分式的加减法;熟练掌握分式的运算法则,正确进行因式分解是解题的关键.11、B【分析】设原来的平均速度为x千米/时,高速公路开通后的平均速度为1.5x千米/时,根据走过相同的距离时间缩短了2小时,列方程即可.【题目详解】解:设原来的平均速度为x千米/时,
由题意得,,故选:B.【题目点拨】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.12、D【解题分析】分别根据同底数幂乘法、积的乘方、平方差公式、完全平方公式,对各选项计算后利用排除法求解.【题目详解】解:A.,故A选项不正确;B.(x+2)(x—2)=x-4,故B选项不正确;C.(a+b)=a+b+2ab,故C选项不正确;D.(-2a)=4a,故D选项正确.故选:D【题目点拨】本题考查了整式乘法,熟练掌握运算性质是解题的关键.二、填空题(每题4分,共24分)13、y=x+1【解题分析】根据题意可知k>0,这时可任设一个满足条件的k,则得到含x、y、b三个未知数的函数式,将(0,1)代入函数式,求得b,那么符合条件的函数式也就求出.【题目详解】解:∵y随x的增大而增大∴k>0∴可选取1,那么一次函数的解析式可表示为:y=x+b把点(0,1)代入得:b=1∴要求的函数解析式为:y=x+1.故答案为y=x+1【题目点拨】本题考查了一次函数图象上点的坐标特征,一次函数的性质,需注意应先确定x的系数,然后把适合的点代入求得常数项.14、【分析】先根据反比例函数的性质得出1-2k>0,再解不等式求出k的取值范围.【题目详解】反比例函数的图象在其每个象限内,随着的增大而减小,,.故答案为:.【题目点拨】本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.15、【分析】根据零指数幂、负整数指数幂的意义可计算,根据积的乘方、以及单项式的除法可计算.【题目详解】1×=,.故答案为:,【题目点拨】本题考查了零指数幂、负整数指数幂、积的乘方、以及单项式的除法,熟练掌握运算法则是解答本题的关键.16、-1【分析】根据多项式的乘法法则计算,与比较求出a和b的值,然后代入a+b计算.【题目详解】∵=x2+x-2,∴=x2+x-2,∴a=1,b=-2,∴a+b=-1.故答案为:-1.【题目点拨】本题考查了多项式与多项式的乘法运算,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.17、【解题分析】由,得x−y=y,即x=y,故=.故答案为.18、0【分析】先化简绝对值,以及求立方根,然后相减即可.【题目详解】解:;故答案为0.【题目点拨】本题考查了立方根和绝对值的定义,解题的关键是正确进行化简.三、解答题(共78分)19、今年1—5月份每辆车的销售价格是4万元.【解题分析】设今年1—5月份每辆车的销售价格是x万元,根据销售量相同列出方程,求解并检验即可.【题目详解】解:设今年1—5月份每辆车的销售价格是x万元,依题意得.解得.经检验,是原方程的解,并且符合题意.答:今年1—5月份每辆车的销售价格是4万元.【题目点拨】本题考查分式方程的应用,理解题意并找到合适的等量关系是解题关键.20、;当时,原式的值为2.【分析】先根据分式混合运算法则把原式进行化简,然后选取合适的值代入计算即可.【题目详解】==,当时,原式==2.【题目点拨】本题主要考查了分式的化简求值,代入求值时注意所代入的数不能使分式无意义是解题关键.21、(1);(2).【分析】(1)利用平方差公式分解即可;
(2)原式提取,再利用完全平方公式分解即可.【题目详解】(1);(2).【题目点拨】本题考查了提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.22、(1);(2);(3);(4).【分析】(1)由平分外角,平分外角,结合三角形外角的性质与三角形内角和定理,即可得到结论;(2)由和三等分外角,和三等分外角,结合三角形外角的性质与三角形内角和定理,即可得到结论;(3)由、和四等分外角,、和四等分外角,结合三角形外角的性质与三角形内角和定理,即可得到结论;(4)由外角进行分,是临近边的等分线,将外角进行等分,是临近边的等分线,合三角形外角的性质与三角形内角和定理,即可得到结论;【题目详解】(1),理由如下:∵平分外角,平分外角,∴,,∵,,∴,∴;(2),理由如下:由已知得:,,∵,,∴,;(3),理由如下:由已知得:,,∵,,∴,,(4),理由如下:由已知得:,,∵,,∴,∴.【题目点拨】本题主要考查三角形外角的性质与三角形内角和定理,掌握三角形外角的性质与三角形内角和定理是解题的关键.23、见解析.【分析】连接AB、CD,由条件可以证明△AOB≌△DOC,从而可以得出AB=CD,故只要量出AB的长,就可以知道玻璃瓶的内径.【题目详解】解:连接AB、CD,∵O为AD、BC的中点,∴AO=DO,BO=CO.在△AOB和△DOC中,,∴△AOB≌△DOC.∴AB=CD.∴只要量出AB的长,就可以知道玻璃瓶的内径.24、(0,)或(0,)【分析】根据k的取值分类讨论,①当k>0时,y随x增大而增大,可知一次函数过两点,利用待定系数法求出一次函数的解析式,然后将x=0代入即可求出此函数与轴的交点坐标;②当k<0时,y随x增大而减小,可知一次函数过两点,利用待定系数法求出一次函数的解析式,然后将x=0代入即可求出此函数与轴的交点坐标.【题目详解】解:①当k>0时,y随x增大而增大∵当时,∴一次函数过两点将代入解析式中,得解得:故该一次函数的解析式为将x=0代入,解得y=,故此函数与轴的交点坐标是(0,);②当k<0时,y随x增大而减小∵当时,∴一次函数过两点将代入解析式中,得解得:故该一次函数的解析式为将x=0代入,解得y=,故此函数与轴的交点坐标是(0,);综上所述:此函数与轴的交点坐标是(0,)或(0,)故答案为:(0,)或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 曲线锯条企业数字化转型与智慧升级战略研究报告
- 塑化机企业ESG实践与创新战略研究报告
- 木质框架及相关木制品企业数字化转型与智慧升级战略研究报告
- 耐热不锈钢大型型钢企业数字化转型与智慧升级战略研究报告
- 双金属温度计企业ESG实践与创新战略研究报告
- 养蚕机械企业县域市场拓展与下沉战略研究报告
- 2025-2030中国天燈行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国大葱产品行业市场深度调研及发展趋势与投资前景研究报告
- 2025-2030中国塑料加工机行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国固定化产品行业市场发展趋势与前景展望战略研究报告
- 大班游戏活动案例《快乐沙池》
- 糖尿病饮食指导护理
- DB41T 1633-2018 排油烟设施清洗服务规范
- 连续梁线型控制技术交底
- 林业专业知识考试试题及答案
- 高三英语语法填空专项训练100(附答案)及解析
- T-CPQS C017-2024 鉴赏收藏用潮流玩偶衍生产品 树脂类艺术品
- 网络安全众测服务要求
- 《茶学概论》课件
- 肠癌筛查早发现早治疗
- 医疗器械经营安全培训必备知识
评论
0/150
提交评论