山东省德州市名校2024届八年级数学第一学期期末学业水平测试试题含解析_第1页
山东省德州市名校2024届八年级数学第一学期期末学业水平测试试题含解析_第2页
山东省德州市名校2024届八年级数学第一学期期末学业水平测试试题含解析_第3页
山东省德州市名校2024届八年级数学第一学期期末学业水平测试试题含解析_第4页
山东省德州市名校2024届八年级数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省德州市名校2024届八年级数学第一学期期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.​

B.​

C.​

D.​2.若等腰三角形一腰上的高与另一腰的夹角为36°,则它的顶角为()A.36° B.54° C.72°或36° D.54°或126°3.下列各式中,正确的个数有(

)①+2=2②③④A.1个 B.2个 C.3个 D.0个4.若k<<k+1(k是整数),则k=()A.6 B.7 C.8 D.95.如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M、N,作直线MN,交BC于点D,连接AD,若△ADC的周长为14,BC=8,则AC的长为A.5 B.6 C.7 D.86.如果把分式中的和都扩大2倍,则分式的值()A.扩大4倍 B.扩大2倍 C.不变 D.缩小2倍7.某地区开展“二十四节气”标识系统设计活动,以期通过现代设计的手段,尝试推动我国非物质文化遗产创新传承与发展.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是()A. B.C. D.8.如图,下列推理及所证明的理由都正确的是()A.若,则,理由是内错角相等,两直线平行B.若,则,理由是两直线平行,内错角相等C.若,则,理由是内错角相等,两直线平行D.若,则,理由是两直线平行,内错角相等9.两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地,设第二组的步行速度为x千米/小时,根据题意可列方程是().A. B.C. D.10.如图,在四边形中,添加下列一个条件后,仍然不能证明,那么这个条件是()A. B.平分 C. D.11.我国古代数学名著《孙子算经》记载一道题,大意为100个和尚吃了100个馒头,已知个大和尚吃个馒头,个小和尚吃个馒头,问有几个大和尚,几个小和尚?若设有个大和尚,个小和尚,那么可列方程组为()A. B. C. D.12.一个正方形的面积等于30,则它的边长a满足()A.4<a<5 B.5<a<6 C.6<a<7 D.7<a<8二、填空题(每题4分,共24分)13.若x,y为实数,且,则的值为____14.石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体.石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使1.111111米长的石墨烯断裂.其中1.111111用科学记数法表示为__________.15.代数式(x﹣2)0÷有意义,则x的取值范围是_____.16.甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为米,乙行驶的时间为秒,与之间的关系如图所示,则甲的速度为每秒___________米.17.如图,已知,添加下列条件中的一个:①,②,③,其中不能确定≌△的是_____(只填序号).18.已知,则___________.三、解答题(共78分)19.(8分)观察以下等式:,,,,……(1)依此规律进行下去,第5个等式为_______,猜想第n个等式为______(n为正整数);(2)请利用分式的运算证明你的猜想.20.(8分)(1)先化简,再求值:其中.(2)解方程:.21.(8分)阅读下面的证明过程,在每步后的横线上填写该步推理的依据,如图,,,是的角平分线,求证:.证明:是的角平分线()又()()()()又()()()22.(10分)先化简,再求值:﹣3x2﹣[x(2x+1)+(4x3﹣5x)÷2x],其中x是不等式组的整数解.23.(10分)如图AM∥BN,C是BN上一点,BD平分∠ABN且过AC的中点O,交AM于点D,DE⊥BD,交BN于点E.(1)求证:△ADO≌△CBO.(2)求证:四边形ABCD是菱形.(3)若DE=AB=2,求菱形ABCD的面积.24.(10分)先化简代数式,再从四个数中选择一个你喜欢的数代入求值.25.(12分)如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=-x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.点P是y轴上一点.(1)写出下列各点的坐标:点A(,)、点B(,)、点C(,);(2)若S△COP=S△COA,请求出点P的坐标;(3)当PA+PC最短时,求出直线PC的解析式.26.如图,已知△ABC和△BDE都是等边三角形,且A,E,D三点在一直线上.请你说明DA﹣DB=DC.

参考答案一、选择题(每题4分,共48分)1、A【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【题目详解】解:连接AM,

∵AB=AC,点M为BC中点,

∴AM⊥CM(三线合一),BM=CM,

∵AB=AC=5,BC=6,

∴BM=CM=3,

在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,

又S△AMC=MN•AC=AM•MC,∴MN==.

故选A.【题目点拨】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.2、D【解题分析】根据题意画出图形,一种情况等腰三角形为锐角三角形,即可推出顶角的度数为50°.另一种情况等腰三角形为钝角三角形,由题意,即可推出顶角的度数为130°.【题目详解】①如图1,等腰三角形为锐角三角形,

∵BD⊥AC,∠ABD=36°,

∴∠A=54°,

即顶角的度数为54°.

②如图2,等腰三角形为钝角三角形,

∵BD⊥AC,∠DBA=36°,

∴∠BAD=54°,

∴∠BAC=126°.

故选D.【题目点拨】本题考查了直角三角形的性质、等腰三角形的性质,解题的关键在于正确的画出图形,结合图形,利用数形结合思想求解.3、B【分析】利用二次根式加减运算法则分别判断得出即可.【题目详解】解:①原式=,错误;②原式=a,错误;③原式=,正确;④原式=5,正确.故答案为:B.【题目点拨】此题考查了二次根式的加减运算,正确合并二次根式是解题关键.4、D【分析】找到90左右两边相邻的两个平方数,即可估算的值.【题目详解】本题考查二次根式的估值.∵,∴,∴.一题多解:可将各个选项依次代入进行验证.如下表:选项逐项分析正误A若×B若×C若×D若√【题目点拨】本题考查二次根式的估算,找到被开方数左右两边相邻的两个平方数是关键.5、A【分析】根据题意可得MN是直线AB的中点,所以可得AD=BD,BC=BD+CD,而△ADC为AC+CD+AD=14,即AC+CD+BD=14,因此可得AC+BC=14,已知BC即可求出AC.【题目详解】根据题意可得MN是直线AB的中点的周长为已知,故选B【题目点拨】本题主要考查几何中的等量替换,关键在于MN是直线AB的中点,这样所有的问题就解决了.6、B【分析】根据题意要求将和都扩大2倍,然后将得出来的结果与原分式进行比较即可得出答案.【题目详解】把分式中的和都扩大2倍得∴分式的值扩大2倍故选:B.【题目点拨】本题主要考查分式的基本性质,掌握分式的基本性质是解题的关键.7、D【分析】根据轴对称图形的概念求解即可.【题目详解】A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、是轴对称图形,本选项正确.故选D.【题目点拨】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8、D【分析】根据平行线的性质与判定定理逐项判断即可.【题目详解】解:A、若,则,理由是两直线平行,内错角相等,故A错误;B、若,不能判断,故B错误;C、若,则,理由是两直线平行,内错角相等,故C错误;D、若,则,理由是两直线平行,内错角相等,正确,故答案为:D.【题目点拨】本题考查了平行线的性质与判定定理,解题的关键是熟练掌握平行线的性质与判定定理.9、D【分析】根据第二组的速度可得出第一组的速度,依据“时间=路程÷速度”即可找出第一、二组分别到达的时间,再根据第一组比第二组早15分钟(小时)到达乙地即可列出分式方程,由此即可得出结论.【题目详解】解:设第二组的步行速度为x千米/小时,则第一组的步行速度为1.2x千米/小时,

第一组到达乙地的时间为:7.5÷1.2x;

第二组到达乙地的时间为:7.5÷x;

∵第一组比第二组早15分钟(小时)到达乙地,

∴列出方程为:.故选:D.【题目点拨】本题考查了由实际问题抽象出分式方程,解题的关键是根据数量关系列出分式方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.10、D【分析】根据全等三角形的判定定理:SSS、SAS、AAS、ASA、Hl逐一判定即可.【题目详解】A选项,,,AC=AC,根据SSS可判定;B选项,平分,即∠DAC=∠BAC,根据SAS可判定;C选项,,根据Hl可判定;D选项,,不能判定;故选:D.【题目点拨】此题主要考查全等三角形的判定,熟练掌握,即可解题.11、C【分析】设有m个大和尚,n个小和尚,题中有2个等量关系:1个和尚吃了1个馒头,大和尚吃的馒头+小和尚吃的馒头=1.【题目详解】解:设有m个大和尚,n个小和尚,根据数量关系式可得:,故选C.【题目点拨】本题考查了由实际问题抽象出二元一次方程组.根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.12、B【解题分析】先根据正方形的面积公式可得边长为,再由52=25,62=36,即可求解.【题目详解】正方形的面积是边长的平方,∵面积为30,∴边长为.∵52=25,62=36,∴,即5<a<6,故选B.【题目点拨】本题考查了无理数的估算,解题的关键是注意找出和30最接近的两个能完全开方的数.二、填空题(每题4分,共24分)13、【分析】根据非负数(式)的性质先求出x,y的值,再代入式中求值即可.【题目详解】解:∵,则=故答案为-1【题目点拨】本题考查了绝对值和算术平方根非负性的应用,能正确把x,y的值求出是解题关键.14、1×11-2【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×11-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定.【题目详解】解:1.111111=1×11-2,

故答案是:1×11-2.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×11-n,其中1≤|a|<11,n为由原数左边起第一个不为零的数字前面的1的个数所决定.15、x≠2,x≠0,x≠1.【分析】根据分式的分母不为零、0的零次幂无意义来列出不等式,解不等式即可得到本题的答案.【题目详解】解:由题意得,x﹣2≠0,x≠0,x﹣1≠0,解得,x≠2,x≠0,x≠1,故答案为:x≠2,x≠0,x≠1.【题目点拨】本题考查的是分式有意义的条件、零指数幂,掌握分式的分母不为零,0的零次幂无意义是解题的关键.16、6【解题分析】由函数图像在B点处可知50秒时甲追上乙,C点为甲到达目的地,D点为乙达到目的地,故可设甲的速度为x,乙的速度为y,根据题意列出方程组即可求解.【题目详解】依题意,设甲的速度为x米每秒,乙的速度为y米每秒,由函数图像可列方程解得x=6,y=4,∴甲的速度为每秒6米故填6.【题目点拨】此题主要考查函数图像的应用,解题的关键是根据函数图像得到实际的含义,再列式求解.17、②.【分析】一般三角形全等的判定方法有SSS,SAS,AAS,ASA,据此可逐个对比求解.【题目详解】∵已知,且∴若添加①,则可由判定≌;若添加②,则属于边边角的顺序,不能判定≌;若添加③,则属于边角边的顺序,可以判定≌.故答案为②.【题目点拨】本题考查全等三角形的几种基本判定方法,只要判定方法掌握得牢固,此题不难判断.18、2【分析】先把变形为,再整体代入求解即可.【题目详解】∵,∴当时,原式.故答案为:2.【题目点拨】本题考查利用因式分解进行整式求值,解题的关键是利用完全平方公式进行因式分解.三、解答题(共78分)19、(1),;(2)见解析【分析】(1)仿照阅读材料中的等式,利用式与式之间的关联得到第5个等式,进而确定出第n个等式即可;(2)验证所得的等式即可.【题目详解】解:(1),.(2)证明∵,,.【题目点拨】此题考查了分式的混合运算,以及有理数的混合运算,及对所给情境进行综合归纳的能力,熟练掌握运算法则是解本题的关键.20、(1)-2;(2)无解【分析】(1)先化简,再将x的值代入进行计算即可;(2)先化成整式方程,再解整式方程,再验根即可.【题目详解】(1)====把代入原式=-2;(2)6-(x+3)=0-x+3=0x=3,当x=3时,3-x=0,所以是原方程无解.【题目点拨】考查了分式的化简求值和解分式方程,解题关键是熟记正确化简分式和解方式方程的步骤.21、见解析.【分析】根据内错角相等两直线平行,角平分线的定义,等量代换,同位角相等两直线平行填空即可.【题目详解】证明:是的角平分线(角平分线的定义)又(等量代换)(内错角相等,两直线平行)(两直线平行,同旁内角互补)又(同角的补角相等)(同位角相等,两直线平行)【题目点拨】此题考查平行线的性质及判定,同角的补角相等,角平分线的定义,熟练运用是解题的关键.22、-7x2-x+,【解题分析】先根据整式的混合运算顺序和运算法则化简原式,再解不等式组求得其整数解,代入计算可得.【题目详解】解:解不等式组得1≤x<2,其整数解为1.∵-3x2-[x(2x+1)+(4x3-5x)÷2x]=-3x2-2x2-x-2x2+=-7x2-x+.∴当x=1时,原式=-7×12-1+=-.【题目点拨】本题主要考查整式的化简求值和解一元一次不等式,解题的关键是掌握整式混合运算顺序和运算法则.23、(1)见解析;(2)见解析;(3)【分析】(1)由ASA即可得出结论;(2)先证明四边形ABCD是平行四边形,再证明AD=AB,即可得出结论;(3)由菱形的性质得出AC⊥BD,证明四边形ACED是平行四边形,得出AC=DE=2,AD=EC,由菱形的性质得出EC=CB=AB=2,得出EB=4,由勾股定理得BD═,即可得出答案.【题目详解】(1)∵点O是AC的中点,∴AO=CO,∵AM∥BN,∴∠DAC=∠ACB,在△AOD和△COB中,,∴△ADO≌△CBO(ASA);(2)由(1)得△ADO≌△CBO,∴AD=CB,又∵AM∥BN,∴四边形ABCD是平行四边形,∵AM∥BN,∴∠ADB=∠CBD,∵BD平分∠ABN,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AD=AB,∴平行四边形ABCD是菱形;(3)由(2)得四边形ABCD是菱形,∴AC⊥BD,AD=CB,又DE⊥BD,∴AC∥DE,∵AM∥BN,∴四边形ACED是平行四边形,∴AC=DE=2,AD=EC,∴EC=CB,∵四边形ABCD是菱形,∴EC=CB=AB=2,∴EB=4,在Rt△DEB中,由勾股定理得BD==,∴.【题目点拨】本题考查了菱形的判定与性质、全等三角形的判定与性质、平行四边形的判定与性质、等腰三角形的判定与性质、勾股定理等知识;熟练掌握菱形的判定与性质是解题的关键.24、(1);(2)【分析】根据分式的混合运算的法则把原式进行化简,再由化简后的式子选择使原式子有意义的数代入计算即可.【题目详解】原式,由题意知,,所以取代入可得原式,故答案为:(1);(2).【题目点拨】考查了分式的化简,利用平方差公式,因式分解的方法化成简单的形式,然后代入数值求解,注意代入数时,要使所取数使得原分式有意义的才行.25、(1)A(6,0),B(0,3),C(2,2);(2)P(0,);(3)直线PC的解析式为【分析】(1)x=0代

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论