




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省深圳市育才一中学2024届八年级数学第一学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列各命题的逆命题是真命题的是()A.对顶角相等 B.若,则C.相等的角是同位角 D.若,则2.下列三组线段能组成三角形的是()A.1,2,3 B.1,2,4 C.3,4,5 D.3,3,63.下列计算中,正确的是()A. B. C. D.4.如图,,,.则的度数为()A. B. C. D.5.设,是实数,定义关于“*”的一种运算:.则下列结论正确的是()①若,则或;②不存在实数,,满足;③;④若,则.A.①②③ B.①③④ C.①②④ D.②③④6.已知,为实数且满足,,设,.①若时,;②若时,;③若时,;④若,则.则上述四个结论正确的有()A.1 B.2 C.3 D.47.在下列交通标识图案中,不是轴对称图形的是()A. B. C. D.8.已知有意义,则的取值范围是()A. B. C. D.且9.已知函数是正比例函数,且图像在第二、四象限内,则的值是()A.2 B. C.4 D.10.8的立方根是()A. B. C.-2 D.2二、填空题(每小题3分,共24分)11.分解因式:ax2+2ax+a=____________.12.如图,在中,,点、分别在、上,连接并延长交的延长线于点,若,,,,则的长为_________.13.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上,若四边形EGFH是菱形,则AE的长是_________________。14.关于的一次函数,其中为常数且.①当时,此函数为正比例函数.②无论取何值,此函数图象必经过.③若函数图象经过,(,为常数),则.④无论取何值,此函数图象都不可能同时经过第二、三、四象限.上述结论中正确的序号有________.15.如图,在平面鱼角坐标系xOy中,A(﹣3,0),点B为y轴正半轴上一点,将线段AB绕点B旋转90°至BC处,过点C作CD垂直x轴于点D,若四边形ABCD的面积为36,则线AC的解析式为_____.16.27的立方根为.17.的相反数是_____.18.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2.0),点(0,1),有下列结论:①关于x的方程kx十b=0的解为x=2:②关于x方程kx+b=1的解为x=0;③当x>2时,y<0;④当x<0时,y<1.其中正确的是______(填序号).三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,、、(1)描点画出这个三角形(2)计算出这个三角形的面积.20.(6分)如图,ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(点D不与B,C重合),连结AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BAD=20°时,∠EDC=°;(2)请你回答:“当DC等于时,ABDDCE”,并把“DC等于”作为已知条件,证明ABDDCE;(3)在D点的运动过程中,ADE的形状也在改变,判断当∠BAD等于时,ADE是等腰三角形.(直接写出结果,不写过程)21.(6分)(1)如图中,已知∠MAN=120°,AC平分∠MAN.∠ABC=∠ADC=90°,则能得如下两个结论:①DC=BC;②AD+AB=AC.请你证明结论②;(2)如图中,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.22.(8分)(1)计算;(2)已知4(x+1)2=9,求出x的值.23.(8分)在正方形ABCD中,点E是射线BC上的点,直线AF与直线AB关于直线AE对称,直线AF交射线CD于点F.(1)如图①,当点E是线段BC的中点时,求证:AF=AB+CF;(2)如图②,当∠BAE=30°时,求证:AF=2AB﹣2CF;(3)如图③,当∠BAE=60°时,(2)中的结论是否还成立?若不成立,请判断AF与AB、CF之间的数量关系,并加以证明.24.(8分)(1)解方程:(2)2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南一北京西”全程大约千米,“复兴号”次列车平均每小时比某列“和谐号”列车多行驶千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”次列车从太原南到北京西需要多长时间.25.(10分)已知,,求下列式子的值:(1);(2)26.(10分)已知:直线,点,分别是直线,上任意两点,在直线上取一点,使,连接,在直线上任取一点,作,交直线于点.(1)如图1,若点是线段上任意一点,交于,求证:;(2)如图2,点在线段的延长线上时,与互为补角,若,请判断线段与的数量关系,并说明理由.
参考答案一、选择题(每小题3分,共30分)1、D【分析】先交换原命题的题设和结论部分,得到四个命题的逆命题,然后再分别判断它们是真命题还是假命题.【题目详解】解:A.“对顶角相等”的逆命题是“相等的角是对顶角”,因为相等的角有很多种,不一定是对顶角,所以逆命题错误,故逆命题是假命题;B.“若,则”的逆命题是“若,则”错误,因为由可得,故逆命题是假命题;C.“相等的角是同位角”的逆命题是“同位角是相等的角”.因为缺少了两直线平行的条件,所以逆命题错误,故逆命题是假命题;D.“若,则”的逆命题是“若,则”正确,故逆命题是真命题;故选:D.【题目点拨】本题主要考查了逆命题和真假命题的定义,对事物做出判断的语句叫做命题,正确的命题叫做真命题,错误的命题叫做假命题.2、C【分析】根据三角形的三边关系逐一判断即可.【题目详解】A.1+2=3,不符合三角形的三边关系,不能构成三角形,故本选项不符合题意;B.1+2<4,不符合三角形的三边关系,不能构成三角形,故本选项不符合题意;C.3+4>5,符合三角形的三边关系,能构成三角形,故本选项符合题意;D.3+3=6,不符合三角形的三边关系,不能构成三角形,故本选项不符合题意.故选C.【题目点拨】此题考查的是判断三条线段是否能构成三角形,掌握三角形的三边关系是解决此题的关键.3、C【分析】直接利用同底数幂的乘除运算法则以及幂的乘方、积的乘方运算法则计算得出答案.【题目详解】A.,故此选项错误;B.,故此选项错误;C.,故此选项正确;D.,故此选项错误;故选:C.【题目点拨】本题主要考查了同底数幂的乘除运算以及幂的乘方、积的乘方运算,正确掌握运算法则是解题关键.4、C【分析】由,∠B=25°,根据三角形内角和定理可得,∠AEB=∠ADC=95°,然后由四边形内角和可得∠DOE的度数.【题目详解】解:∵∠A=60°,∠B=25°,∴∠AEB=,∵,∴∠ADC=∠AEB=95°,∴∠DOE=,故选择:C.【题目点拨】本题考查了四边形内角和,全等三角形的性质,三角形的内角和,解题的关键是掌握角之间的关系进行计算.5、B【分析】根据新定义的运算,一一判断即可得出结论.【题目详解】解:①∵a*b=0,
∴(a+b)2-(a-b)2=0,
a2+2ab+b2-a2-b2+2ab=0,
4ab=0,
∴a=0或b=0,故①正确;
②∵a*b=(a+b)2-(a-b)2=4ab,又a*b=a2+4b2,
∴a2+4b2=4ab,
∴a2-4ab+4b2=(a-2b)2=0,
∴a=2b时,满足条件,
∴存在实数a,b,满足a*b=a2+4b2;故②错误,
③∵a*(b+c)=(a+b+c)2-(a-b-c)2=4ab+4ac,
又∵a*b+a*c=4ab+4ac
∴a*(b+c)=a*b+a*c;故③正确.
④∵a*b=8,
∴4ab=8,
∴ab=2,
∴(10ab3)÷(5b2)=2ab=4;故④正确.
故选:B.【题目点拨】本题考查实数的运算、完全平方公式、整式的乘除运算等知识,解题的关键是灵活运用所学知识解决问题.6、B【分析】先求出对于①当时,可得,所以①正确;对于②当时,不能确定的正负,所以②错误;对于③当时,不能确定的正负,所以③错误;对于④当时,,④正确.【题目详解】,①当时,,所以,①正确;②当时,,如果,则此时,,②错误;③当时,,如果,则此时,,③错误;④当时,,④正确.故选B.【题目点拨】本题关键在于熟练掌握分式的运算,并会判断代数式的正负.7、D【分析】根据轴对称图形的概念对各个选项进行判断即可.【题目详解】A、B、C中的图案是轴对称图形,D中的图案不是轴对称图形,故选:D.【题目点拨】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,也可以说这个图形关于这条直线(成轴)对称.8、D【分析】根据分式成立的条件和零指数幂成立的条件列不等式求解【题目详解】解:由题意可知:且解得:且故选:D.【题目点拨】本题考查分式和零指数幂成立的条件,掌握分母不能为零,零指数幂的底数不能为零是解题关键.9、C【分析】根据正比例函数的定义解答即可.【题目详解】∵函数是正比例函数,∴,得m=2或m=4,∵图象在第二、四象限内,∴3-m,∴m,∴m=4,故选:C.【题目点拨】此题考查正比例函数的定义、性质,熟记定义并掌握正比例函数的特点即可解答问题.10、D【解题分析】根据立方根的定义进行解答.【题目详解】∵,
∴的立方根是,
故选:D.【题目点拨】本题主要考查了立方根定义,熟练掌握相关定义是解题的关键.二、填空题(每小题3分,共24分)11、a(x+1)1【解题分析】ax1+1ax+a=a(x1+1x+1)=a(x+1)1.12、1【分析】过点C作CG∥FD,证得∠F=∠BED=∠CEF,则CF=CE=3,利用AF=AB+BE=5+BE,在中,根据勾股定理求得BE=10,AC=11,AF=15,利用DE∥CG,求得,利用CG∥FD,求得,即可求得的长.【题目详解】如图,过点C作CG∥FD交AB于点G,∴∠BED=∠BCG,∠ACG=∠F,∵∠BCA=1∠BED,∴∠BED=∠BCG=∠ACG,∴∠F=∠BED=∠CEF,∴CF=CE=3,∵AF=AB+BE=5+BE,∴AC=AF-CF=5+BE-3=1+BE,在中,∠BAC=90,AB=5,AC=1+BE,BC=CE+BE=3+BE,∴,即,解得:BE=10,∴AC=11,AF=15,∵DE∥CG,∴,∴,∵CG∥FD,∴,∴,∴,解得:BD=1.故答案为:1.【题目点拨】本题考查了平行线分线段成比例定理,勾股定理的应用,利用勾股定理求得BE的长是解题的关键.13、【解题分析】首先连接EF交AC于O,由矩形ABCD中,四边形EGFH是菱形,易证得△CFO≌△AOE(AAS),即可得OA=OC,然后由勾股定理求得AC的长,继而求得OA的长,又由△AOE∽△ABC,利用相似三角形的对应边成比例,即可求得答案.【题目详解】连接EF交AC于O,∵四边形EGFH是菱形,∴EF⊥AC,OE=OF,∵四边形ABCD是矩形,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠CAB,在△CFO与△AOE中,,∴△CFO≌△AOE(AAS),∴AO=CO,∵AC=,∴AO=AC=5,∵∠CAB=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴,∴,∴AE=.故答案为:.【题目点拨】此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.14、②③④【分析】根据一次函数知识依次判断各项即可.【题目详解】①当k=0时,则,为一次函数,故①错误;②整理得:,∴x=2时,y=5,∴此函数图象必经过,故②正确;③把,代入中,得:,②-①得:,解得:,故③正确;④当k+2<0时,即k<-2,则-2k+1>5,∴此函数图象都不可能同时经过第二、三、四象限,故④正确;故答案为:②③④.【题目点拨】本题是对一次函数知识的考查,熟练掌握一次函数的性质定理是解决本题的关键.15、y=x+1或y=﹣3x﹣1.【分析】过C作CE⊥OB于E,则四边形CEOD是矩形,得到CE=OD,OE=CD,根据旋转的性质得到AB=BC,∠ABC=10°,根据全等三角形的性质得到BO=CE,BE=OA,求得OA=BE=3,设OD=a,得到CD=OE=|a﹣3|,根据面积公式列方程得到C(﹣6,1)或(6,3),设直线AB的解析式为y=kx+b,把A点和C点的坐标代入即可得到结论.【题目详解】解:过C作CE⊥OB于E,则四边形CEOD是矩形,∴CE=OD,OE=CD,∵将线段AB绕点B旋转10°至BC处,∴AB=BC,∠ABC=10°,∴∠ABO+∠CBO=∠CBO+∠BCE=10°,∴∠ABO=∠BCE,∵∠AOB=∠BEC=10°,∴△ABO≌△BCO(AAS),∴BO=CE,BE=OA,∵A(﹣3,0),∴OA=BE=3,设OD=a,∴CD=OE=|a﹣3|,∵四边形ABCD的面积为36,∴AO•OB+(CD+OB)•OD=×3×a+(a﹣3+a)×a=36,∴a=±6,∴C(﹣6,1)或(6,3),设直线AB的解析式为y=kx+b,把A点和C点的坐标代入得,或解得:或,∴直线AB的解析式为或y=﹣3x﹣1.故答案为或y=﹣3x﹣1.【题目点拨】本题考查了坐标与图形变化﹣旋转,待定系数法求函数的解析式,全等三角形的判定和性质,正确的作出图形是解题的关键.16、1【解题分析】找到立方等于27的数即可.解:∵11=27,∴27的立方根是1,故答案为1.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算17、【解题分析】只有符号不同的两个数互为相反数,由此可得的相反数是-,故答案为-.18、①②③【分析】根据一次函数的图象与性质判断即可.【题目详解】①由一次函数y=kx+b的图象与x轴点(2.0)知,当y=0时,x=2,即方程kx+b=0的解为x=2,故此项正确;②由一次函数y=kx+b的图象与y轴点(0,1),当y=1时,x=0,即方程kx+b=1的解为x=0,故此项正确;③由图象可知,x>2的点都位于x轴的下方,即当x>2时,y<0,故此项正确;④由图象可知,位于第二象限的直线上的点的纵坐标都大于1,即当x<0时,y﹥1,故此项错误,所以正确的是①②③,故答案为:①②③.【题目点拨】本题考查了一次函数的图象与性质,涉及一次函数与一元一次方程的关系、一次函数与不等式的关系,解答的关键是会利用数形结合思想解决问题.三、解答题(共66分)19、(1)见详解;(2).【分析】(1)在平面直角坐标系中找到相应的A,B,C点,然后顺次连接A,B,C即可画出这个三角形;(2)直接利用三角形的面积公式即可得出答案.【题目详解】(1)如图(2)【题目点拨】本题主要考查平面直角坐标系中描点画三角形及三角形的面积,掌握三角形的面积公式及点在平面直角坐标系中的位置是解题的关键.20、(1)20;(2)2;2;证明见解析;(3)30°或60°【分析】(1)根据外角等于不相邻两内角和可解题;(2)当DC=AB=2时,即可求证△ABD≌△DCE;(3)分类谈论,①若AD=AE时;②若DA=DE时,③若EA=ED时,即可解题.【题目详解】解:(1)∵∠BAD=20°,∠B=40°,∴∠ADC=60°,∵∠ADE=40°,∴∠EDC=20°.(2)DC=AB=2时,∵AB=AC=2,∴∠B=∠C,∵∠BAD=180°-∠B-∠ADB=180°-40°-∠ADB=140°-∠ADB,∠CDE=180°-∠ADE-∠ADB=180°-40°-∠ADB=140°-∠ADB,∴∠BAD=∠CDE.在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)∵AB=AC,∴∠B=∠C=40°,①若AD=AE时,则∠ADE=∠AED=40°,∵∠AED>∠C,∴△ADE不可能是等腰三角形;②若DA=DE时,即∠DAE=∠DEA=(180°-40°)=70°,∵∠BAC=180°-40°-40°=100°,∴∠BAD=100°-70°=30°;③若EA=ED时,∠ADE=∠DAE=40°,∴∠BAD=100°-40°=60°,∴当∠BAD=30°或60°时,△ADE是等腰三角形.【题目点拨】本题考查了全等三角形的判定,三角形外角的性质,等腰三角形的判定和性质.运用分类讨论解本题是解题的关键.21、(1)证明见解析(2)成立,证明见解析.【分析】(1)根据角平分线的性质可得∠DAC=∠BAC=60°,又已知∠ABC=∠ADC=90°,所以∠DCA=∠BCA=30°,根据直角三角形的性质可证AC=2AD,AC=2AB,所以AD+AB=AC.(2)根据已知条件可在AN上截取AE=AC,连接CE,根据AAS可证△ADC≌△EBC,得到DC=BC,DA=BE,所以AD+AB=AB+BE=AE,即AD+AB=AC.【题目详解】(1)∵∠MAN=120°,AC平分∠MAN.∴∠DAC=∠BAC=60°,∵∠ABC=∠ADC=90°,∴∠DCA=∠BCA=30°,在Rt△ACD,Rt△ACB中,∠DCA=30°∠BCA=30°∴AC=2AD,AC=2AB,∴2AD=2AB∴AD=AB∴AD+AB=AC.(2)(1)中的结论①DC=BC;②AD+AB=AC都成立,理由:如图,在AN上截取AE=AC,连结CE,∵∠BAC=60°,∴△CAE为等边三角形,∴AC=CE,∠AEC=60°,∵∠DAC=60°,∴∠DAC=∠AEC,∵∠ABC+∠ADC=180°,∠ABC+∠EBC=180°,∴∠ADC=∠EBC,∴,∴DC=BC,DA=BE,∴AD+AB=AB+BE=AE,∴AD+AB=AC.22、(1);(2)或.【分析】(1)先计算算术平方根、立方根、绝对值运算、零指数幂,再计算实数的加减法即可得;(2)利用平方根的性质解方程即可得.【题目详解】(1)原式,,;(2),,,或,即x的值为或.【题目点拨】本题考查了算术平方根、立方根、零指数幂、利用平方根的性质解方程等知识点,熟记各运算法则是解题关键.23、(1)证明见解析;(2)证明见解析;(3)成立,理由见解析【分析】(1)由折叠的性质得出AG=AB,BE=GE,进而用HL判断出Rt△EGF≌Rt△ECF,代换即可得出结论;
(2)利用含30°的直角三角形的性质即可证明;
(3)先判断出△AIF为等边三角形,得出AI=FI=AF,再代换即可得出结论.【题目详解】(1)如图,过点E作EG⊥AF于点G,连接EF.由折叠性质知,△ABE≌△AGE,∴AG=AB,BE=GE,∵BE=CE,∴GE=CE,在Rt△EGF和Rt△ECF中,,∴Rt△EGF≌Rt△ECF,(HL)∴FG=FC,∵AF=AG+FG,∴AF=AB+FC;(2)如图,延长AF、BC交于点H.在正方形ABCD中,∠B=90°,由折叠性质知,∠BAE=∠HAE=30°,∴∠H=90°-∠BAE-∠HAE=30°,Rt△ABH中,∠B=90°,∠H=30°,∴AH=2AB,同理:FH=2FC,∵AF=AH﹣FH,∴AF=2AB﹣2FC;(3)由折叠知,∠BAE=∠FAE=60°,
∴∠DAE=∠DAF=30°,又∵AD⊥IF,
∴△AIF为等边三角形,
∴AF=AI=FI,
由(2)可得AE=2AB,
IE=2IC,
∵IC=FC-FI,
∴IC=FC-AF,
∴IE=2FC-2AF,
∵AI=A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生活教育主题班会实施框架
- 高中政治必修三第9课:全面依法治国
- 国画葡萄幼儿创意课件
- 专题六:100以内的加法和减法复习课件一年级数学下学期期末核心考点集训人教版
- 室内设计大师分析
- 高血压的护理措施
- 小班美术创意课:《星球大变身》课件大纲
- 汽车行业第三方物流概述
- 租房抵债合同协议
- 钻空施工合同协议
- 2024年职业病防治考试题库附答案(版)
- GB/T 4706.53-2024家用和类似用途电器的安全第53部分:坐便器的特殊要求
- 《智能网联汽车用摄像头硬件性能要求及试验方法》编制说明
- 2024年3月ITSMS信息技术服务管理体系基础(真题卷)
- 节能评审和节能评估文件编制费用收费标准
- 2023-2024年《劳务劳动合同样本范本书电子版模板》
- 中国居民口腔健康状况第四次中国口腔健康流行病学调查报告
- MOOC 数据挖掘-国防科技大学 中国大学慕课答案
- 中药注射剂合理使用培训
- 第13课+清前中期的兴盛与危机【中职专用】《中国历史》(高教版2023基础模块)
- 2024年国家粮食和物资储备局直属事业单位招聘笔试参考题库附带答案详解
评论
0/150
提交评论