2024届广东省佛山南海区四校联考数学八上期末质量检测试题含解析_第1页
2024届广东省佛山南海区四校联考数学八上期末质量检测试题含解析_第2页
2024届广东省佛山南海区四校联考数学八上期末质量检测试题含解析_第3页
2024届广东省佛山南海区四校联考数学八上期末质量检测试题含解析_第4页
2024届广东省佛山南海区四校联考数学八上期末质量检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省佛山南海区四校联考数学八上期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.下列运算中,结果正确的是()A.x3·x3=x6 B.3x2+2x2=5x4 C.(x2)3=x5 D.(x+y)2=x2+y22.如图,一次函数的图象与轴,轴分别相交于两点,经过两点,已知,则的值分别是()A.,2 B., C.1,2 D.1,3.已知点与点关于轴对称,那么的值为()A. B. C. D.4.在下图所示的几何图形中,是轴对称图形且对称轴最多的图形的是()A. B. C. D.5.点P(-2,3)到x轴的距离是()A.2 B.3 C. D.56.下面是“北”“比”“鼎”“射”四个字的甲骨文,其中不是轴对称图形的是()A. B. C. D.7.下列各数中最小的是()A.0 B.1 C.﹣ D.﹣π8.下列计算正确的是A. B. C. D.9.如图,已知直线AB:y=x+分别交x轴、y轴于点B、A两点,C(3,0),D、E分别为线段AO和线段AC上一动点,BE交y轴于点H,且AD=CE,当BD+BE的值最小时,则H点的坐标为()A.(0,4) B.(0,5) C.(0,) D.(0,)10.如图,△DEF为直角三角形,∠EDF=90°,△ABC的顶点B,C分别落在Rt△DEF两直角边DE和DF上,若∠ABD+∠ACD=55°,则∠A的度数是()A.30° B.35° C.40° D.55°11.若一个三角形的三边长分别为6、8、10,则这个三角形最长边上的中线长为()A.3.6 B.4 C.4.8 D.512.在平面直角坐标系中,点位于哪个象限?()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(每题4分,共24分)13.如图,是和的公共斜边,AC=BC,,E是的中点,联结DE、CE、CD,那么___________________.14.四边形ABCD中,∠B=∠D=90°,∠C=72°,在BC、CD上分别找一点M、N,使△AMN的周长最小时,∠AMN+∠ANM的度数为_______15.在平面直角坐标系中,点A(2,0),B(0,1),当点C的坐标为_______时,△BOC与△ABO全等.16.如图,等边的边垂直于轴,点在轴上已知点,则点的坐标为____.17.中,,,交于,交于,点是的中点.以点为原点,所在的直线为轴构造平面直角坐标系,则点的横坐标为________.18.若为三角形的三边,且满足,第三边为偶数,则=__________.三、解答题(共78分)19.(8分)如图,,,垂足分别为E、D,CE,BD相交于.(1)若,求证:;(2)若,求证:.20.(8分)“金源”食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:方案一:从包装盒加工厂直接购买,购买所需的费用(元)与包装盒个数(个)满足图中的射线所示的函数关系;方案二:租赁机器自己加工,所需费用(元)(包括租赁机器的费用和生产包装盒的费用)与包装盒个数(个)满足图中射线所示的函数关系.根据图象解答下列问题:(1)点的坐标是_____________,方案一中每个包装盒的价格是___________元,射线所表示的函数关系式是_____________.(2)求出方案二中的与的函数关系式;(3)你认为选择哪种方案更省钱?请说明理由.21.(8分)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,BP=cm,CQ=cm.(2)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(4)若点Q以(3)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次相遇?22.(10分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?23.(10分)2019年,在新泰市美丽乡村建设中,甲、乙两个工程队分别承担某处村级道路硬化和道路拓宽改造工程.己知道路硬化和道路拓宽改造工程的总里程数是1.6千米,其中道路硬化的里程数是道路拓宽里程数的2倍少1千米.(1)求道路硬化和道路拓宽里程数分别是多少千米;(2)甲、乙两个工程队同时开始施工,甲工程队比乙工程队平均每天多施工10米.由于工期需要,甲工程队在完成所承担的施工任务后,通过技术改进使工作效率比原来提高了.设乙工程队平均每天施工米,若甲、乙两队同时完成施工任务,求乙工程队平均每天施工的米数和施工的天数.24.(10分)因式分解:(1)(2)25.(12分)(1)问题发现:如图1,和均为等边三角形,点在的延长线上,连接,求证:.(2)类比探究:如图2,和均为等腰直角三角形,,点在边的延长线上,连接.请判断:①的度数为_________.②线段之间的数量关系是_________.(3)问题解决:在(2)中,如果,求线段的长.26.如图是由边长为的小正方形构成的网格,每个小正方形的顶点叫做格点,的顶点在格点.请选择适当的格点用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图,作关于直线的对称图形;(2)如图,作的高;(3)如图,作的中线;(4)如图,在直线上作出一条长度为个单位长度的线段在的上方,使的值最小.

参考答案一、选择题(每题4分,共48分)1、A【分析】依据完全平方公式、幂的乘方、同底数幂的乘法、合并同类项的法则即可解答.【题目详解】A.x3·x3=x6,正确;

B.3x2+2x2=5x2,故本选项错误;

C.(x2)3=x6,故本选项错误;

D.(x+y)2=x2+2xy+y2,故本选项错误;

故选A.【题目点拨】本题考查了完全平方公式、合并同类项法则、同底数幂的乘法、幂的乘方的性质,需熟练掌握且区分清楚.2、A【解题分析】由图形可知:△OAB是等腰直角三角形,,可得A,B两点坐标,利用待定系数法可求k和b的值.【题目详解】由图形可知:△OAB是等腰直角三角形,OA=OB,

∵,,即,∴OA=OB=2,

∴A点坐标是(2,0),B点坐标是(0,2),

∵一次函数的图象与x轴、y轴分别相交于A、B两点,

∴将A,B两点坐标代入,

得解得:,

故选:A.【题目点拨】本题主要考查了图形的分析运用和待定系数法求解析式,找出A,B两点的坐标是解题的关键.3、A【分析】根据关于轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【题目详解】解:点与点关于轴对称,,,∴,故选:A.【题目点拨】此题主要考查了关于轴对称点的坐标,关键是掌握点的坐标的变化规律.4、A【解题分析】根据轴对称图形的定义:在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴,逐一判定即可.【题目详解】A选项,是轴对称图形,有4条对称轴;B选项,是轴对称图形,有2条对称轴;C选项,不是轴对称图形;D选项,是轴对称图形,有3条对称轴;故选:A.【题目点拨】此题主要考查对轴对称图形以及对称轴的理解,熟练掌握,即可解题.5、B【解题分析】直接利用点的坐标性质得出答案.【题目详解】点P(-2,1)到x轴的距离是:1.故选B.【题目点拨】此题主要考查了点的坐标,正确把握点的坐标性质是解题关键.6、B【解题分析】根据轴对称的定义,逐一判断选项,即可得到答案.【题目详解】A是轴对称图形,不符合题意,B不是轴对称图形,符合题意,C是轴对称图形,不符合题意,D是轴对称图形,不符合题意,故选B.【题目点拨】本题主要考查轴对称图形的定义,掌握轴对称图形的定义,是解题的关键.7、D【解题分析】根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可判断.【题目详解】﹣π<﹣<0<1.则最小的数是﹣π.故选:D.【题目点拨】本题考查了实数大小的比较,理解任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小是关键.8、A【分析】对各项分别进行负整数指数幂、算术平方根、零指数幂、绝对值的化简等运算,然后选出正确选项即可.【题目详解】解:、,故本选项正确;、,故本选项错误;、,故本选项错误;、,故本选项错误;故选:.【题目点拨】本题考查了负整数指数幂、算术平方根、零指数幂、绝对值的化简等运算,属于基础题,掌握各知识点运算法则是解题的关键.9、A【分析】作EF⊥BC于F,设AD=EC=x.利用勾股定理可得BD+BE=+=+,要求BD+BE的最小值,相当于在x轴上找一点M(x,0),使得点M到G(,3),K(,)的距离之和最小.【题目详解】解:由题意A(0,),B(-3,0),C(3,0),∴AB=AC=8,作EF⊥BC于F,设AD=EC=x.∵EF∥AO,∴,∴EF=,CF=,∵OH∥EF,∴,∴OH=,∴BD+BE=+=+,要求BD+BE的最小值,相当于在x轴上找一点M(x,0),使得点M到K(,3),G(,)的距离之和最小.设G关于x轴的对称点G′(,),直线G′K的解析式为y=kx+b,则有,解得k=,b=,∴直线G′K的解析式为y=x,当y=0时,x=,∴当x=时,MG+MK的值最小,此时OH===4,∴当BD+BE的值最小时,则H点的坐标为(0,4),故选A.【题目点拨】本题考查一次函数图象上的点的特征、轴对称最短问题、勾股定理、平行线分线段成比例定理等知识,解题的关键是学会用转化的思想思考问题,属于中考选择题中的压轴题.10、B【分析】由∠EDF=90°,则∠DBC+∠DCB=90°,则得到∠ABC+∠ACB=145°,根据三角形内角和定理,即可得到∠A的度数.【题目详解】解:∵∠EDF=90°,∴∠DBC+∠DCB=90°,∵∠ABD+∠ACD=55°,∴∠ABC+∠ACB=90°+55°=145°,∴∠A=;故选:B.【题目点拨】本题考查了三角形的内角和定理,解题的关键是熟练掌握三角形的内角和定理进行解题.11、D【分析】首先根据勾股定理的逆定理可判定此三角形是直角三角形,则最大边上的中线即为斜边上的中线,然后根据直角三角形斜边上的中线等于斜边的一半,从而得出结果.【题目详解】解:∵62+82=100=102,∴三边长分别为6cm、8cm、10cm的三角形是直角三角形,最大边是斜边为10cm.∴最大边上的中线长为5cm.故选D.【题目点拨】本题考查勾股定理的逆定理;直角三角形斜边上的中线.12、D【分析】根据各象限内点的坐标特征解答即可.【题目详解】解:点坐标为,则它位于第四象限,故选D.【题目点拨】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.二、填空题(每题4分,共24分)13、1【分析】先证明A、C、B、D四点共圆,得到∠DCB与∠BAD的是同弧所对的圆周角的关系,得到∠DCB的度数,再证∠ECB=45°,得出结论.【题目详解】解:∵AB是Rt△ABC和Rt△ABD的公共斜边,E是AB中点,∴AE=EB=EC=ED,∴A、C、B、D在以E为圆心的圆上,∵∠BAD=32°,∴∠DCB=∠BAD=32°,又∵AC=BC,E是Rt△ABC的中点,∴∠ECB=45°,∴∠ECD=∠ECB-∠DCB=1°.故答案为:1.【题目点拨】本题考查直角三角形的性质、等腰三角形性质、圆周角定理和四点共圆问题,综合性较强.14、144°【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【题目详解】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵四边形ABCD中,∠B=∠D=90°,∠C=72°∴∠DAB=108°,∴∠AA′M+∠A″=72°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×72°=144°,故填:144°.【题目点拨】此题主要考查了平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M,N的位置是解题关键.15、(-2,1),(2,1)或(-2,0)【解题分析】本题可从两个三角形全等入手,根据全等的性质,分类讨论即可.【题目详解】如图:当点C在轴负半轴上时,△BOC与△BOA全等.点C当点C在第一象限时,△BOC与△OBA全等.点C当点C在第二象限时,△BOC与△OBA全等.点C故答案为(-2,1),(2,1)或(-2,0).【题目点拨】考查全等三角形的性质,画出示意图,分类讨论即可.16、【分析】根据等边三角形的性质以及30°的直角三角形的性质求出AC的长度,再利用勾股定理求出CE的长度即可得出答案.【题目详解】如图:设AB与x轴交于E点∵AB⊥CE∴∠CEA=90°∵∴AE=2,OE=2∵△ABC是等边三角形,CE⊥AB∴在Rt△ACE中,AC=2AE=4∴∴∴点C的坐标为故答案为:【题目点拨】本题考查了等边三角形,30°的直角三角形的性质,勾股定理,掌握等边三角形,30°的直角三角形的性质,勾股定理是解题的关键.17、【分析】连接DE,过E作EH⊥OD于H,求得∠EDO=45°,即可得到Rt△DEH中,求得DH,进而得出OH,即可求解.【题目详解】如图所示,连接,过作于,于,于,是的中点,,,,,,,,中,,,点的横坐标是.【题目点拨】本题主要考查了直角三角形斜边上中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.解决问题的关键是作辅助线构造等腰直角三角形.18、3【分析】先根据非负数的性质求出a和b的值,再根据三角形三边关系求出c的取值范围,进而求出c的值.【题目详解】∵a、b满足(b﹣1)1=0,∴a=3,b=1.∵a、b、c为三角形的三边,∴8<c<11.∵第三边c为偶数,∴c=3.故答案为:3.【题目点拨】本题考查了三角形三边关系以及非负数的性质,解答本题的关键是求出a和b的值,此题难度不大.三、解答题(共78分)19、(1)证明见解析;(1)证明见解析.【分析】(1)根据已知条件,∠BEC=∠CDB=90°,∠EOB=∠DOC,所以∠B=∠C,则△ABO△ACO(AAS),即OB=OC.(1)根据(1)可得△BOE△COD(AAS),即OE=OD,再由CE⊥AB,BD⊥AC可得AO是∠BAC的角平分线,故∠1=∠1.【题目详解】(1)∵CE⊥AB,BD⊥AC,∴∠BEC=∠CDB=90°,又∵∠EOB=∠DOC,∴∠B=∠C,∴在△ABO与△ACO中,,∴△ABO△ACO(AAS),∴OB=OC.(1)由(1)知,∠BEO=∠CDO,∴在△BOE与△COD中,,∴△BOE△COD(AAS),∴OE=OD.又∵CE⊥AB,BD⊥AC,∴AO是∠BAC的角平分线,∴∠1=∠1.【题目点拨】本题考查全等三角形的性质,解题关键是根据已知条件证明得出△ABO△ACO(AAS).20、(1),,;(2);(3)当需要包装盒小于个时,选择方案一省钱:当需要包装盒大于个时,选择方案二省钱,见解析【分析】(1)根据图像即可得出A的坐标,用价格=费用包装盒个数,假设出射线所表示的函数关系式是:,将A代入即可;(2)设的函数关系式是,把点,代入,求解即可得与的函数关系式;(3)根据图象经过的点的坐标用待定系数法求得函数的解析式即可;求出当x的值为多少时,两种方案同样省钱,并据此分类讨论最省钱的方案即可.【题目详解】解:(1)由图像可知:A,∴方案一中每个包装盒的价格是:(元),设射线所表示的函数关系式是:把A代入得:解得:∴;故答案为:,,.(2)设的函数关系式是.图象过点,解得.方案二中的函数表达式是.(3)当时,.(元)当需要包装盒个时,方案一和方案二所需钱数都是元;根据图象可知:当需要包装盒小于个时,选择方案一省钱:当需要包装盒大于个时,选择方案二省钱.【题目点拨】本题考查了一次函数的应用,解题的关键是从实际问题中整理出函数模型,并利用函数的知识解决实际问题.21、(1)BP=3cm,CQ=3cm;(2)全等,理由详见解析;(3);(4)经过s点P与点Q第一次相遇.【分析】(1)速度和时间相乘可得BP、CQ的长;(2)利用SAS可证三角形全等;(3)三角形全等,则可得出BP=PC,CQ=BD,从而求出t的值;(4)第一次相遇,即点Q第一次追上点P,即点Q的运动的路程比点P运动的路程多10+10=20cm的长度.【题目详解】解:(1)BP=3×1=3㎝,CQ=3×1=3㎝(2)∵t=1s,点Q的运动速度与点P的运动速度相等∴BP=CQ=3×1=3cm,∵AB=10cm,点D为AB的中点,∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,∴△BPD≌△CQP(SAS)(3)∵点Q的运动速度与点P的运动速度不相等,∴BP与CQ不是对应边,即BP≠CQ∴若△BPD≌△CPQ,且∠B=∠C,则BP=PC=4cm,CQ=BD=5cm,∴点P,点Q运动的时间t=s,∴cm/s;(4)设经过x秒后点P与点Q第一次相遇.由题意,得x=3x+2×10,解得∴经过s点P与点Q第一次相遇.【题目点拨】本题考查动点问题,解题关键还是全等的证明和利用,将动点问题视为定点问题来分析可简化思考过程.22、软件升级后每小时生产1个零件.【解题分析】分析:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据工作时间=工作总量÷工作效率结合软件升级后节省的时间,即可得出关于x的分式方程,解之经检验后即可得出结论.详解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据题意得:,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴(1+)x=1.答:软件升级后每小时生产1个零件.点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23、(1)道路硬化里程数为5.4千米,道路拓宽里程数为3.2千米;(2)乙工程队平均每天施工20米,施工的天数为160天【分析】(1)设道路拓宽里程数为x千米,则道路硬化里程数为(2x-1)千米,根据道路硬化和道路拓宽改造工程的总里程数是1.6千米,即可得出关于x的一元一次方程,解之即可得出结论;(2)设乙工程队平均每天施工a米,则甲工程队技术改进前每天施工(a+10)米,技术改进后每天施工(a+10)米,由甲、乙两队同时完成施工任务,即可得出关于a的分式方程,解之经检验后即可得出a值,再将其代入中可求出施工天数.【题目详解】解:(1)设道路拓宽里程数为千米,则道路硬化里程数为千米,依题意,得:,解得:,.答:道路硬化里程数为5.4千米,道路拓宽里程数为3.2千米.(2)设乙工程队平均每天施工米,则甲工程队技术改进前每天施工米,技术改进后每天施工点米,依题意,得:乙工程队施工天数为天,甲工程队技术改造前施工天数为:天,技术改造后施工天数为:天.依题意,得:,解得:,经检验,是原方程的解,且符合题意,.答:乙工程队平均每天施工20米,施工的天数为160天.【题目点拨】本题考查了一元一次方程的应用、列代数式以及分式方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,用含a的代数式表示出施工天数;找准等量关系,正确列出分式方程.24、(1)(2)【解题分析】试题分析:(1)直接利用平方差公式因式分解即可;(2)提公因式a后再利用完全平方公式因式分解即可.试题解析:(1);(2).25、(1)见解析;(2)①,②;(3)【分析】(1)根据等边三角形的性质得到AB=AC=BC,∠BAC=60°,AD=AE,∠DAE=60°,利用等量代换得∠BAD=∠CAE,则可根据“SAS”判断△ABD≌△ACE;(2)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠CAE,AD=AE,根据全等三角形的性质得到∠ACE=∠B=45°,BD=CE,等量代换即可得到结论;(3)先证明△CDE是直角三角形,再计算BC=2,从而可得CE=3,再运用勾股定理可得DE的长.【题目详解】(1)证明:和是等边三角形,且,即在和中(2)∵和均为等腰直角三角形,∴AB=AC,∠BAC=∠DAE,AD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论