2024届湖南省芷江县岩桥中学八年级数学第一学期期末学业质量监测试题含解析_第1页
2024届湖南省芷江县岩桥中学八年级数学第一学期期末学业质量监测试题含解析_第2页
2024届湖南省芷江县岩桥中学八年级数学第一学期期末学业质量监测试题含解析_第3页
2024届湖南省芷江县岩桥中学八年级数学第一学期期末学业质量监测试题含解析_第4页
2024届湖南省芷江县岩桥中学八年级数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省芷江县岩桥中学八年级数学第一学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,∠A、∠1、∠2的大小关系是()A.∠A>∠1>∠2 B.∠2>∠1>∠A C.∠A>∠2>∠1 D.∠2>∠A>∠12.下列交通标志中,是轴对称图形的是()A. B.C. D.3.一元二次方程,经过配方可变形为()A. B. C. D.4.如图,已知,欲证,还必须从下列选项中补选一个,则错误的选项是()A. B.C. D.5.篮球小组共有15名同学,在一次投篮比赛中,他们的成绩如右面的条形图所示,这15名同学进球数的众数和中位数分别是()A.6,7 B.7,9 C.9,7 D.9,96.若等腰三角形的顶角为,则它的一个底角度数为A. B. C. D.7.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D,E,AD=3,BE=1,则DE的长是()A.1 B.2 C.3 D.48.﹣2的绝对值是()A.2 B. C. D.9.等腰三角形的一个内角为50°,它的顶角的度数是()A.40° B.50° C.50°或40° D.50°或80°10.下列图形中,是轴对称图形的是().A. B. C. D.11.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”.上面两位同学的话能反映出的统计量分别是()A.众数和平均数 B.平均数和中位数C.众数和方差 D.众数和中位数12.平方根等于它本身的数是()A.0 B.1,0 C.0,1,-1 D.0,-1二、填空题(每题4分,共24分)13.如图,在正方形网格中有两个小正方形被涂黑,再涂黑一个图中其余的小正方形,使得整个被涂黑的图案构成一个轴对称图形,那么涂法共有_____种.14.一次函数的图像不经过第__________象限.15.已知2x+3y﹣1=0,则9x•27y的值为______.16.如图,以数轴的单位长度线段为边做一个正方形以表示数2的点为圈心,正方形对角线长为半径画半圆,交数轴于点A和点B,则点A表示的数是_________17.如图,在中,,是的垂直平分线,的周长为14,,那么的周长是__________.18.要使分式有意义,的取值应满足_________.三、解答题(共78分)19.(8分)如图,△ABC三个顶点的坐标分别为A(3,4),B(1,2),C(5,1),(1)请画出△ABC关于y轴对称的图形△A1B1C1,(2)△A1B1C1三个顶点坐标分别为A1,B1,C120.(8分)金堂县在创建国家卫生城市的过程中,经调查发现居民用水量居高不下,为了鼓励居民节约用水,拟实行新的收费标准.若每月用水量不超过12吨,则每吨按政府补贴优惠价元收费;若每月用水量超过12吨,则超过部分每吨按市场指导价元收费.毛毛家家10月份用水22吨,交水费59元;11月份用水17吨,交水费1.5元.(1)求每吨水的政府补贴优惠价和市场指导价分别是多少元?(2)设每月用水量为吨,应交水费为元,请写出与之间的函数关系式;(3)小明家12月份用水25吨,则他家应交水费多少元?21.(8分)甲、乙两车分别从,两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到地,乙车立即以原速原路返回到地.甲、乙两车距B地的路程()与各自行驶的时间()之间的关系如图所示.(1)求甲车距地的路程关于的函数解析式;(2)求乙车距地的路程关于的函数解析式,并写出自变量的取值范围;(3)当甲车到达地时,乙车距地的路程为22.(10分)如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,点F在AC上,且BD=DF.(1)求证:△DCF≌△DEB;(2)若DE=5,EB=4,AF=8,求AD的长.23.(10分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定天数是多少天?(2)已知甲队每天的施工费用为5500元,乙队每天的施工费用为3000元,为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙合做来完成,则该工程施工费用是多少?24.(10分)数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点为的中点时,如图1,确定线段与的大小关系,请你直接写出结论:(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,与的大小关系是:(填“>”,“<”或“=”).理由如下:如图2,过点作,交于点.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形中,点在直线上,点在直线上,且.若的边长为1,,求的长(请你直接写出结果).25.(12分)已知ABC是等腰直角三角形,∠C=90°,点M是AC的中点,延长BM至点D,使DM=BM,连接AD.(1)如图①,求证:DAM≌BCM;(2)已知点N是BC的中点,连接AN.①如图②,求证:ACN≌BCM;②如图③,延长NA至点E,使AE=NA,连接,求证:BD⊥DE.26.计算.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据三角形的一个外角大于任何一个和它不相邻的内角解答.【题目详解】∵∠1是三角形的一个外角,∴∠1>∠A,又∵∠2是三角形的一个外角,∴∠2>∠1,∴∠2>∠1>∠A.故选:B.【题目点拨】此题主要考查了三角形的内角和外角之间的关系,熟练掌握,即可解题.2、C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,分析即可.【题目详解】解:A、不是轴对称图形,故选项A不正确;B、不是轴对称图形,故选项B不正确;C、是轴对称图形,故选项C正确;D、不是轴对称图形,故选项D不正确;故选:C.【题目点拨】本题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两侧折叠后能够重叠.3、A【解题分析】x2-4x+4-4-6=(x-2)2-10=0,即(x-2)2=10;故选A.4、C【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【题目详解】A、符合ASA定理,即根据ASA即可推出△ABD≌△ACD,故本选项错误;B、符合AAS定理,即根据AAS即可推出△ABD≌△ACD,故本选项错误;C、不符合全等三角形的判定定理,即不能推出△ABD≌△ACD,故本选项正确;D、符合SAS定理,即根据SAS即可推出△ABD≌△ACD,故本选项错误;故选:C.【题目点拨】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.5、C【分析】根据中位数、众数的意义求解即可.【题目详解】解:学生进球数最多的是9个,共有6人,因此众数是9,将这15名同学进球的个数从小到大排列后处在第8位的是7个,因此中位数是7,故选:C.【题目点拨】本题考查中位数、众数的意义和求法,理解中位数、众数的意义.掌握计算方法是正确解答的关键.6、B【分析】由已知顶角为80°,根据等腰三角形的两底角相等的性质及三角形内角和定理,即可求出它的一个底角的值.【题目详解】解:∵等腰三角形的顶角为80°,

∴它的一个底角为(180°-80°)÷2=50°.

故选B.【题目点拨】本题主要考查了等腰三角形的性质及三角形内角和定理.通过三角形内角和,列出方程求解是正确解答本题的关键.7、B【分析】根据条件可以得出∠E=∠ADC=90,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.【题目详解】∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90,∴∠EBC+∠BCE=90.∵∠BCE+∠ACD=90,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC=1,CE=AD=1.∴DE=EC−CD=1−1=2故选B.【题目点拨】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解决问题的关键,学会正确寻找全等三角形,属于中考常考题型.8、A【解题分析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.9、D【分析】根据50°是顶角的度数或底角的度数分类讨论,然后结合三角形的内角和定理即可得出结论.【题目详解】解:①若顶角的度数为50°时,此时符合题意;②若底角的度数为50°时,则等腰三角形的顶角为:180°-50°-50°=80°综上所述:它的顶角的度数是50°或80°故选D.【题目点拨】此题考查的是等腰三角形的性质和三角形的内角和定理,掌握等边对等角和分类讨论的数学思想是解决此题的关键.10、A【分析】轴对称图形的定义:图形沿某一条直线折叠后,直线两旁的部分重合,则这个图形是轴对称图形;根据轴对称图形定义,逐个判断,即可得到答案.【题目详解】四个选项中,A是轴对称图形,其他三个不是轴对称图形;故选:A.【题目点拨】本题考查了轴对称图形的知识;解题的关键是熟练掌握轴对称图形的定义,即可完成求解.11、D【分析】根据众数和中位数的概念可得出结论.【题目详解】一组数据中出现次数最多的数值是众数;将数据从小到大排列,当项数为奇数时中间的数为中位数,当项数为偶数时中间两个数的平均数为中位数;由题可知,小明所说的是多数人的分数,是众数,小英所说的为排在中间人的分数,是中位数.故选为D.【题目点拨】本题考查众数和中位数的定义,熟记定义是解题的关键.12、A【分析】由于一个正数有两个平方根,且互为相反数;1的平方根为1;负数没有平方根,利用这些规律即可解决问题.【题目详解】∵负数没有平方根,1的平方根为1,正数有两个平方根,且互为相反数,∴平方根等于它本身的数是1.故选:A.【题目点拨】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;1的平方根是1;负数没有平方根.二、填空题(每题4分,共24分)13、1【分析】直接利用轴对称图形的性质得出符合题意的答案.【题目详解】解:如图所示:所标数字处都可以使得整个被涂黑的图案构成一个轴对称图形,共1种涂法.故答案为:1.【题目点拨】本题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.14、二【分析】根据k、b的正负即可确定一次函数经过或不经过的象限.【题目详解】解:一次函数的图像经过第一、三、四象限,不经过第二象限.故答案为:二【题目点拨】本题考查了一次函数的图像与性质,一次函数的系数是判断其图像经过象限的关键,,图像经过第一、二、三象限;,图像经过第一、三、四象限;,图像经过第一、二、四象限;,图像经过第二、三、四象限.15、1【分析】直接利用幂的乘方运算法则将原式变形,进而利用同底数幂的乘法运算法则求出答案.【题目详解】解:∵2x+1y﹣1=0,∴2x+1y=1.

∴9x•27y=12x×11y=12x+1y=11=1.

故答案为:1.【题目点拨】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确将原式变形是解题关键.16、【分析】由图可知,正方形的边长是1,所以对角线的长为,所以点A表示的数为2减去圆的半径即可求得.【题目详解】由题意可知,正方形对角线长为,所以半圆的半径为,则点A表示的数为.故答案为.【题目点拨】本题主要考查了数轴的基本概念,圆的基本概念以及正方形的性质,根据题意求出边长是解题的关键.17、1【分析】由垂直平分线的性质可得,故的周长可转化为:,由,可得,故可求得的周长.【题目详解】∵是的垂直平分线,∴,∵的周长为14,∴,又,∴,∴的周长.故答案为:1.【题目点拨】线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等,解题的关键是运用线段的垂直平分线的性质.18、【分析】根据分式的分母不能为0即可得.【题目详解】由分式的分母不能为0得:解得:故答案为:.【题目点拨】本题考查了分式有意义的条件:分式的分母不能为0,熟记分式的相关概念及性质是解题关键.三、解答题(共78分)19、(1)见解析;(2)【分析】(1)根据题意,找出对应的对称坐标,即可画出;(2)由对称图形可知,其对应坐标.【题目详解】(1)如图所示:(2)由对称性,得A1,B1,C1.【题目点拨】此题主要考查轴对称图形的画法与坐标求解,熟练掌握,即可解题.20、(1)每吨水的政府补贴优惠价和市场指导价分别是2元、3.5元;(2);(3)69.5【分析】(1)根据题意列出方程组,求解此方程组即可;(2)根据用水量分别求出在两个不同的范围内y与x之间的函数关系,注意自变量的取值范围;(3)根据小明家的用水量判断其在哪个范围内,代入相应的函数关系式求值即可.【题目详解】解:(1)由题可得,解得:,∴每吨水的政府补贴优惠价和市场指导价分别是2元、3.5元;(2)①当时,,②当时,,综上:;(3)∵,∴答:他家应交水费69.5元.【题目点拨】本题考查了二元一次方程组的应用及一次函数的应用,明确题意正确找出数量关系是解题关键,同时在求一次函数表达式时,此函数是一个分段函数,注意自变量的取值范围.21、(1)=280-80x;(2)当0≤x<2时,=60x;当2≤x≤4时,=-60x+240;(3)1【分析】(1)根据图象求出甲车的速度和,两地距离,然后根据甲车距地的路程=A、B两地的距离-甲车行驶的路程即可得出结论;(2)根据图象求出乙车的速度和甲、乙两车的相遇时间,然后根据相遇前和相遇后分类讨论:根据相遇前,乙车距地的路程=乙车行驶的路程;相遇后,乙车距地的路程=相遇点距B地的路程-相遇后乙车行驶的路程,即可求出结论;(3)先求出甲车从A到B所需要的时间,然后求出此时乙车到B地还需要的时间,即可求出结论.【题目详解】解:(1)由图象可知:甲车小时行驶了280-160=120千米,,两地相距280千米∴甲车的速度为120÷=80千米/小时∴甲车距地的路程=280-80x;(2)由图象可知:甲车1小时行驶了60千米乙车的速度为:60÷1=60千米/小时∴甲、乙两车相遇时间为280÷(80+60)=2小时,此时乙车距离B地60×2=120千米∵相遇后乙车原速返回∴乙车返回到B点共需要2×2=4小时∴当0≤x<2时,乙车距地的路程=60x;当2≤x≤4时,乙车距地的路程=120-60(x-2)=-60x+240(3)甲车从A到B共需280÷80=小时∴当甲从A到B地时,乙车还需4-=小时到B地∴当甲车到达地时,乙车距地的路程为×60=1千米故答案为:1.【题目点拨】此题考查的是函数的应用,掌握根据实际意义求函数的解析式和行程问题公式是解决此题的关键.22、(1)见解析;(2)AD=1.【分析】(1)先利用角平分线的性质定理得到DC=DE,再利用HL定理即可证得结论.(2)由△DCF≌△DEB得CD=DE=5,CF=BE=4,进而有AC=12,在Rt△ACD中,利用勾股定理即可解得AD的长.【题目详解】(1)∵AD平分∠BAC,DE⊥AB,∠C=90°,∴DC=DE,在Rt△DCF和Rt△DEB中,,∴Rt△DCF≌Rt△DEB(HL);(2)∵△DCF≌△DEB,∴CF=EB=4,∴AC=AF+CF=8+4=12,又知DC=DE=5,在Rt△ACD中,AD=.【题目点拨】本题考查了角平分线的性质定理、全等三角形的判定与性质、勾股定理,熟练掌握角平分线的性质定理和HL定理证明三角形全等是解答的关键.23、(1)这项工程的规定时间是30天;(2)该工程的施工费用为153000元【分析】(1)设这项工程的规定时间是x天,根据工程问题的等量关系列分式方程求解;(2)通过第一问求出的甲、乙单独完成的时间,算出合作需要的时间,乘以每天的费用得到总费用.【题目详解】解:(1)设这项工程的规定时间是x天,根据题意得:,解得,经检验是方程的解,答:这项工程的规定时间是30天;(2)该工程由甲、乙合做完成,所需时间为;(天),则该工程的施工费用是:18×(5500+3000)=153000(元),答:该工程的施工费用为153000元.【题目点拨】本题考查分式方程的应用,解题的关键是掌握工程问题中的列式方法.24、(1)=;(2)=,过程见解析;(1)CD的长是1或1.【解题分析】方法一:如图,等边三角形中,是等边三角形,又.方法二:在等边三角形中,而由是正三角形可得25、(1)见解析;(2)①见解析;②见解析【分析】(1)由点M是AC中点知AM=CM,结合∠AMD=∠CMB和DM=BM即可得证;

(2)①由点M,N分别是AC,BC的中点及AC=BC可得CM=CN,结合∠C=∠C和BC=AC即可得证;

②取AD中点F,连接EF,先证△EAF≌△ANC得∠NAC=∠AE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论