




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省苏州市高新区实验初级中学2024届数学八上期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若把分式(均不为0)中的和都扩大3倍,则原分式的值是()A.扩大3倍 B.缩小至原来的 C.不变 D.缩小至原来的2.小颖用长度为奇数的三根木棒搭一个三角形,其中两根木棒的长度分别为和,则第三根木棒的长度是()A. B. C. D.3.下列长度的线段能组成三角形的是()A.3、4、8 B.5、6、11 C.5、6、10 D.3、5、104.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是[来()A.SAS B.ASA C.AAS D.SSS5.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5 B.5或6 C.5或7 D.5或6或76.小明学习了全等三角形后总结了以下结论:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等、对应角相等;③面积相等的两个三角形是全等图形;④全等三角形的周长相等其中正确的结论个数是()A.1 B.2 C.3 D.47.已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.8 B.9 C.10 D.118.如图,把纸片沿DE折叠,当点A落在四边形BCDE的外部时,则与和之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A. B.C. D.9.在四个数中,满足不等式的有()A.1个 B.2个 C.3个 D.4个10.如图,已知,则不一定能使的条件是()A. B. C. D.11.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A. B.2 C.5 D.412.《九章算术》是中国古代数学著作之一,书中有这样一个问题:五只雀、六只燕共重一斤,雀重燕轻,互换其中一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为斤,一只燕的重量为斤,则可列方程组为()A. B. C. D.二、填空题(每题4分,共24分)13.某鞋店一周内销售了某种品牌的男鞋双,各种尺码的销售量统计如下:尺码/销量/双由此你能给这家鞋店提供的进货建议是________________________.14.如图,已知△ABC的周长是22,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是_____.15.如图,,,垂足分别为,,,,点为边上一动点,当_______时,形成的与全等.16.若正比例函数的图象经过点,则的值是__________.17.已知,则=________.18.如果一个多边形的内角和为1260º,那么从这个多边形的一个顶点引对角线,可以把这个多边形分成_______________个三角形.三、解答题(共78分)19.(8分)如图,在△ABC中,∠ABC=90°,AB=6cm,AD=24cm,BC与CD的长度之和为34cm,其中C是直线l上的一个动点,请你探究当C离点B有多远时,△ACD是以DC为斜边的直角三角形.20.(8分)如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.(1)判断∠D是否是直角,并说明理由.(2)求四边形ABCD的面积.21.(8分)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,当△PCD的周长最小时,在图中画出点P的位置,并求点P的坐标.22.(10分)如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.23.(10分)龙人文教用品商店欲购进、两种笔记本,用160元购进的种笔记本与用240元购进的种笔记本数量相同,每本种笔记本的进价比每本种笔记本的进价贵10元.(1)求、两种笔记本每本的进价分别为多少元?(2)若该商店准备购进、两种笔记本共100本,且购买这两种笔记本的总价不超过2650元,则至少购进种笔记本多少本?24.(10分)尺规作图:如图,已知.(1)作的平分线;(2)作边的垂直平分线,垂足为.(要求:不写作法,保留作图痕迹).25.(12分)已知,如图1,我们在2018年某月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”)该十字星的十字差为,再选择其它位置的十字星,可以发现“十字差”仍为1.(1)如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为.(2)若将正整数依次填入6列的长方形数表中,不同位置十字星的“十字差”是一个定值吗?如果是,请求出这个定值;如果不是,请说明理由.(3)若将正整数依次填入k列的长方形数表中(k≥3),继续前面的探究,可以发现相应“十字差”为与列数有关的定值,请用表示出这个定值,并证明你的结论.26.如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,BE=2DE=2,CD=.(1)求AB的长;(2)求AC的长.
参考答案一、选择题(每题4分,共48分)1、A【分析】将原式中x变成3x,将y变成3y,再进行化简,与原式相比较即可.【题目详解】由题意得,所以原分式的值扩大了3倍故选择A.【题目点拨】此题考察分式的化简,注意结果应化为最简分式后与原分式相比较.2、A【分析】首先根据三角形的三边关系求得第三根木棒的取值范围,再进一步根据奇数这一条件选取.【题目详解】解:设第三根木棒长为xcm,根据三角形的三边关系,得7-3<x<7+3,即4<x<1.又∵x为奇数,∴第三根木棒的长度可以为5cm,7cm,9cm.故选A.【题目点拨】本题主要考查了三角形的三边关系以及奇数的定义,掌握三角形第三边长应小于另两边之和,且大于另两边之差是解答此题的关键.3、C【解题分析】解:A、3+4<8,故不能组成三角形,故A错误;B、5+6=11,故不能组成三角形,故B错误;C、5+6>10,故能组成三角形,故C正确;D、3+5<10,故不能组成三角形,故D错误.故选C.点睛:本题主要考查了三角形三边的关系,判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【题目详解】请在此输入详解!4、D【解题分析】试题解析:在△ADC和△ABC中,
,
∴△ADC≌△ABC(SSS),
∴∠DAC=∠BAC,
即∠QAE=∠PAE.
故选D.5、D【解题分析】试题分析:根据内角和为720°可得:多边形的边数为六边形,则原多边形的边数为5或6或7.考点:多边形的内角和6、C【分析】根据全等三角形的判定及性质逐一判断即可.【题目详解】解:①全等三角形的形状相同、大小相等;①正确,②全等三角形的对应边相等、对应角相等;②正确,③面积相等的两个三角形不一定是全等图形,故③错误,④全等三角形的周长相等,④正确,∴①②④正确,故答案为:C.【题目点拨】全等三角形的判定及性质,理解并掌握全等三角形的判定及性质是解题的关键.7、C【题目详解】∵一个正多边形的一个外角为36°,∴这个正多边形的边数是360÷36=10,故选C8、C【分析】根据折叠性质得出∠A=∠A′,根据三角形外角性质得出∠1=∠DOA+∠A,∠DOA=∠2+∠A′,即可得出答案.【题目详解】如图,∵根据折叠性质得出∠A=∠A′,
∴∠1=∠DOA+∠A,∠DOA=∠2+∠A′,
∴∠1=∠A+∠2+∠A,
∴2∠A=∠1-∠2,
故选C.【题目点拨】本题考查三角形折叠角度问题,掌握折叠的性质和三角形外角性质是关键.9、B【分析】分别用这四个数与进行比较,小于的数即是不等式的解.【题目详解】解:∵,,,∴小于的数有2个;∴满足不等式的有2个;故选择:B.【题目点拨】本题考查了不等式的解,以及比较两个实数的大小,解题的关键是掌握比较两个有理数的大小的法则.10、B【分析】根据全等三角形的判定:AAS、SAS、ASA、SSS、HL,即可进行判断,需要注意SSA是不能判断两个三角形全等.【题目详解】解:当BD=CD时,结合题目条件用SAS即可判断出两三角形全等,故A选项错误;当AB=AC时,SSA是不能判断两个三角形全等,故B选项正确;当时,AAS能用来判定两个三角形全等,故C选项错误;当时,ASA能用来判定两个三角形全等,故D选项错误.故选:B.【题目点拨】本题主要考查的是全等三角形的判定,正确的掌握全等三角形的判定方法是解题的关键.11、D【分析】证明△BDH≌△ADC,根据全等三角形的对应边相等即可得出结论.【题目详解】∵AD⊥BC,∴∠BDH=∠ADC=90°.∵∠ABC=15°,∴∠BAD=∠ABC=15°,∴AD=BD.∵BE⊥AC,∴∠BEC=90°,∴∠CAD+∠C=90°,∠DBH+∠C=90°,∴∠DBH=∠CAD.在△BDH和△ADC中,∵,∴△BDH≌△ADC(ASA),∴AC=BH.∵AC=1,∴BH=1.故选:D.【题目点拨】本题考查了三角形内角和定理,全等三角形的判定和性质,等腰三角形的判定,解答此题的关键是能求出△BDH≌△ADC,难度适中.12、C【分析】根据题意,可以列出相应的方程组,从而可以解答本题.【题目详解】根据题目条件找出等量关系并列出方程:(1)五只雀和六只燕共重一斤,列出方程:5x+6y=1(2)互换其中一只,恰好一样重,即四只雀和一只燕的重量等于五只燕一只雀的重量,列出方程:4x+y=5y+x,故选C.【题目点拨】此题考查二元一次方程组应用,解题关键在于列出方程组二、填空题(每题4分,共24分)13、25.5cm尺码的鞋子可以多进一些(答案不唯一,符合实情就行)【分析】利用众数的意义进行解答即可.【题目详解】解:去鞋厂进货时25.5cm尺码型号的鞋子可以多进一些,这组数据中的众数是25.5,故男鞋中型号25.5cm尺码销售较好,25.5cm尺码的鞋子可以多进一些.故答案为:25.5cm尺码的鞋子可以多进一些.(答案不唯一,符合实情就行)【题目点拨】本题题主要考查了众数的意义,理解众数反映了一组数据的集中程度,是描述一组数据集中趋势的量是解答本题的关键.14、1【分析】根据角平分线上的点到角的两边的距离相等可得点O到AB、AC、BC的距离都相等,从而可得到△ABC的面积等于周长的一半乘以OD,然后列式进行计算即可求解.【题目详解】解:如图,连接OA,作OE⊥AB于E,OF⊥AC于F.∵OB、OC分别平分∠ABC和∠ACB,∴OD=OE=OF,∴S△ABC=S△BOC+S△AOB+S△AOC===×22×3=1.故答案为:1.【题目点拨】本题考查了角平分线上的点到角的两边的距离相等的性质,判断出三角形的面积与周长的关系是解题的关键.15、1【分析】当BP=1时,Rt△ABP≌Rt△PCD,由BC=6可得CP=4,进而可得AB=CP,BP=CD,再结合AB⊥BC、DC⊥BC可得∠B=∠C=90°,可利用SAS判定△ABP≌△PCD.【题目详解】解:当BP=1时,Rt△ABP≌Rt△PCD,∵BC=6,BP=1,∴PC=4,∴AB=CP,∵AB⊥BC、DC⊥BC,∴∠B=∠C=90°,在△ABP和△PCD中,∴△ABP≌△PCD(SAS),故答案为:1.【题目点拨】本题考查了全等三角形的判定,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)是解题的关键.16、-1【分析】把点代入函数解析式,列出关于a的方程,通过解方程组来求a的值.【题目详解】∵正比例函数的图象经过点,∴解得,a=-1.故答案为:-1.【题目点拨】本题考查了一次函数图象上点的坐标特征.直线上任意一点的坐标都满足函数关系式y=kx(k≠0).17、【分析】根据幂的乘方与积的乘方运算法则解答即可.【题目详解】∵,,∴;故答案为:.【题目点拨】本题主要考查了幂的乘方与同底数幂的除法,熟记幂的运算法则是解答本题的关键.幂的乘方,底数不变,指数相乘;同底数的幂相除,底数不变,指数相减.18、1【分析】首先根据多边形内角和公式可得多边形的边数,再计算分成三角形的个数.【题目详解】解:设此多边形的边数为,由题意得:,
解得;,
从这个多边形的一个顶点引对角线,可以把这个多边形分成的三角形个数:9-2=1,
故答案为:1.【题目点拨】此题主要考查了多边形的内角,关键是掌握多边形的内角和公式.三、解答题(共78分)19、8cm【解题分析】试题分析:先根据BC与CD的长度之和为34cm,可设BC=x,则CD=(34-x),根据勾股定理可得:AC2=AB2+BC2=62+x2,△ACD是以DC为斜边的直角三角形,AD=24cm,根据勾股定理可得:AC2=CD2-AD2=(34-x)2-242,∴62+x2=(34-x)2-242,解方程即可求解.试题解析:∵BC与CD的长度之和为34cm,∴设BC=xcm,则CD=(34﹣x)cm.∵在△ABC中,∠ABC=90°,AB=6cm,∴AC2=AB2+BC2=62+x2.∵△ACD是以DC为斜边的直角三角形,AD=24cm,∴AC2=CD2﹣AD2=(34﹣x)2﹣242,∴62+x2=(34﹣x)2﹣242,解得x=8,即BC=8cm.20、(1)∠D是直角.理由见解析;(2)2.【分析】(1)连接AC,先根据勾股定理求得AC的长,再根据勾股定理的逆定理,求得∠D=90°即可;
(2)根据△ACD和△ACB的面积之和等于四边形ABCD的面积,进行计算即可.【题目详解】(1)∠D是直角.理由如下:连接AC.∵AB=20,BC=15,∠B=90°,∴由勾股定理得AC2=202+152=1.又∵CD=7,AD=24,∴CD2+AD2=1,∴AC2=CD2+AD2,∴∠D=90°.(2)四边形ABCD的面积=AD•DC+AB•BC=×24×7+×20×15=2.【题目点拨】考查了勾股定理以及勾股定理的逆定理的综合运用,解决问题时需要区别勾股定理及其逆定理.通过作辅助线,将四边形问题转化为三角形问题是关键.21、图见详解;(,)【分析】过作于,延长到,使,连接,交于,连接,的值最小,即可得到点;通过和点的坐标,运用待定系数法求出直线的函数表达式,再通过和点的坐标,运用待定系数法求出直线的函数表达式,联合两个表达式解方程组求出交点坐标即可.【题目详解】解:如图所示,过作于,延长到,使,连接,交于,连接;∵△PCD的周长=∴时,可取最小值,图中点即为所求;又∵BD=3,DC=1∴平面直角坐标系中每一个小方格的边长为1,即:A(5,4),B(1,0),D(4,0),E(1,4)设直线的解析式为,代入点和得:解得:∴设直线的解析式为,代入点和得:解得:∴∴联合两个一次函数可得:∴解得∴(,)【题目点拨】本题主要考查了轴对称最短路径的画法,待定系数法求一次函数解析式,两直线的交点与二元一次方程组的解,求出一次函数的解析式组建二元一次方程组是解题的关键.22、(1)75°(2)证明见解析【解题分析】试题分析:(1)由AB=AC可得∠C=∠B=30°,可求得∠BAC,再利用角的和差可求得∠DAC;(2)由外角的性质得到∠ADC=75°,即可得到∠ADC=∠DAC,从而有AC=DC,即可得到结论.试题解析:(1)∵AB=AC,∠B=30°,∴∠C=30°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠DAB=45°,∴∠DAC=∠BAC﹣∠DAB=120°﹣45°=75°;(2)∵∠ADC=∠B+∠DAB=30°+45°=75°,∴∠ADC=∠DAC,∴AC=DC,∵AB=AC,∴AB=CD.考点:1.等腰三角形的性质;2.三角形的外角性质.23、(1)、两种笔记本每本的进价分别为20元、30元;(2)至少购进种笔记本35本【分析】(1)设种笔记本每本的进价为元,则每本种笔记本的进价为(x+10)元,根据用160元购进的种笔记本与用240元购进的种笔记本数量相同即可列出方程,解方程即可求出结果;(2)设购进种笔记本本,根据购进的A种笔记本的价钱+购进的B种笔记本的价钱≤2650即可列出关于a的不等式,解不等式即可求出结果.【题目详解】(1)解:设种笔记本每本的进价为元,根据题意,得:,解得:.经检验:是原分式方程的解,.答:、两种笔记本每本的进价分别为20元、30元.(2)解:设购进种笔记本本,根据题意,得:,解得:.∴至少购进种笔记本35本.【题目点拨】本题考查的是分式方程的应用和一元一次不等式的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.24、(1)图见解析;(2)图见解析【分析】(1)根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 伺服系统与工业机器人课件第10章 工业机器人的运力学分析
- 守护蓝色星球
- 分享护理文献
- 羊驼创意画课件
- 山西省平遥县综合职业技术学校2024-2025学年高三第二学期期终调研测试文生物试题试卷含解析
- 河北东方学院《文化人类学》2023-2024学年第二学期期末试卷
- 甘肃省会宁一中2025届高三下学期4月月考化学试题含解析
- 南阳理工学院《统计分析与软件应用》2023-2024学年第一学期期末试卷
- 唐山学院《太阳能发电技术》2023-2024学年第二学期期末试卷
- 内蒙古化工职业学院《企业战略思考与行动系列讲座》2023-2024学年第二学期期末试卷
- 2024福建省能源石化集团有限责任公司秋季社会招聘120人笔试参考题库附带答案详解
- 吉林省吉林市2024-2025学年高三下学期3月三模试题 英语 含答案
- 工程竣工决算编审方案的编制与审核指导
- 国开2025年《会计政策判断与选择》形考任务1-9答案
- 2025年高速公路收费站(车辆通行费收费员)岗位职业技能资格知识考试题库与答案
- 2025年智慧农业考试题大题及答案
- T-CECRPA 011-2024 温室气体 产品碳足迹量化方法与要求 光伏组件
- Unit3 Weather Part A(教学设计)-2023-2024学年人教PEP版英语四年级下册
- 大学生创新创业知能训练与指导知到智慧树章节测试课后答案2024年秋西北农林科技大学
- 中央空调系统维保服务报价清单
- 8.3 法治社会 课件高中政治统编版必修三政治与法治
评论
0/150
提交评论