湖南省株洲市茶陵县2024届数学八上期末学业水平测试模拟试题含解析_第1页
湖南省株洲市茶陵县2024届数学八上期末学业水平测试模拟试题含解析_第2页
湖南省株洲市茶陵县2024届数学八上期末学业水平测试模拟试题含解析_第3页
湖南省株洲市茶陵县2024届数学八上期末学业水平测试模拟试题含解析_第4页
湖南省株洲市茶陵县2024届数学八上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省株洲市茶陵县2024届数学八上期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.数字用科学记数法表示为()A. B. C. D.2.若,则的值是()A.1 B.2 C.3 D.43.如图,中,,,,动点从点出发沿射线以2的速度运动,设运动时间为,当为等腰三角形时,的值为()A.或 B.或12或4 C.或或12 D.或12或44.如图,将一张长方形纸片对折,再对折,然后沿第三个图中的虚线剪下,将纸片展开,得到一个四边形,这个四边形的面积是()A. B. C. D.5.在平面直角坐标系中,下列各点位于x轴上的是()A.(1,﹣2) B.(3,0) C.(﹣1,3) D.(0,﹣4)6.如图,在平面直角坐标系中,函数和的图象分别为直线,,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,…,依次进行下去,则点的坐标为().A. B.C. D.7.如图,△ABE≌△ACD,∠1=∠2,∠B=∠C,下列等式不一定正确的是()A.AB=AC B.∠BAD=∠CAE C.BE=CD D.AD=DE8.若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C.7或9 D.9或129.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.2.8 B. C.2.4 D.3.510.如果点和点关于轴对称,则,的值为()A., B.,C., D.,11.下列计算正确的是().A. B.=1C. D.12.要使分式有意义,则x的取值应满足()A.x≠2 B.x=2 C.x=1 D.x≠1二、填空题(每题4分,共24分)13.若,则=___________.14.如图,直线:与直线:相交于点P(1,2),则关于的不等式x+1>mx+n的解集为____________.15.圆周率π=3.1415926…精确到千分位的近似数是_____.16.点P(-2,-3)到x轴的距离是_______.17.25的平方根是.18.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=.三、解答题(共78分)19.(8分)梧州市特产批发市场有龟苓膏粉批发,其中A品牌的批发价是每包20元,B品牌的批发价是每包25元,小王需购买A,B两种品牌的龟苓膏粉共1000包.(1)若小王按需购买A,B两种品牌龟苓膏粉共用22000元,则各购买多少包?(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000包龟苓膏粉,共用了y元,设A品牌买了x包,请求出y与x之间的函数关系式;(3)在(2)中,小王共用了20000元,他计划在网店包邮销售这批龟苓膏粉,每包龟苓膏粉小王需支付邮费8元,若每包销售价格A品牌比B品牌少5元,请你帮他计算,A品牌的龟苓膏粉每包定价不低于多少元时才不亏本?(运算结果取整数)20.(8分)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=_______,β=_______.②求α、β之间的关系式.(2)是否存在不同于以上②中的α、β之间的关系式?若存在,求出这个关系式,若不存在,请说明理由.21.(8分)如图,在平面直角坐标系中,点A的坐标(2,0),点C是y轴上的动点,当点C在y轴上移动时,始终保持是等边三角形(点A、C、P按逆时针方向排列);当点C移动到O点时,得到等边三角形AOB(此时点P与点B重合).〖初步探究〗(1)点B的坐标为;(2)点C在y轴上移动过程中,当等边三角形ACP的顶点P在第二象限时,连接BP,求证:;〖深入探究〗(3)当点C在y轴上移动时,点P也随之运动,探究点P在怎样的图形上运动,请直接写出结论,并求出这个图形所对应的函数表达式;〖拓展应用〗(4)点C在y轴上移动过程中,当OP=OB时,点C的坐标为.22.(10分)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M.(1)若∠B=65°,求∠NMA的度数;(2)连接MB,若AC=12cm,BC=8cm.①求△MBC的周长;②在直线MN上是否存在点P,使PB+CP的值最小,若存在,标出点P的位置并求PB+CP的最小值,若不存在,说明理由;③设D为BC的中点.求证:.23.(10分)某校兴趣小组在创客嘉年华活动中组织了计算机编程比赛,八年级每班派25名学生参加,成绩分别为、、、四个等级.其中相应等级的得分依次记为10分、9分、1分、7分.将八年级的一班和二班的成绩整理并绘制成如下统计图表:班级平均数(分)中位数(分)众数(分)方差一班1.7699二班1.76110请根据本学期所学过的《数据的分析》相关知识分析上述数据,帮助计算机编程老师选择一个班级参加校级比赛,并阐述你选择的理由.24.(10分)如图1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,操作示例我们可以取直角梯形ABCD的一腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新的图形(如图2).思考发现小明在操作后发现,该剪拼方法就是先将△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上.又因为在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一条直线上,那么构成的新图形是一个四边形,进而根据平行四边形的判定方法,可以判断出四边形ABEF是一个平行四边形,而且还是一个特殊的平行四边形——矩形.1.图2中,矩形ABEF的面积是;(用含a,b,c的式子表示)2.类比图2的剪拼方法,请你就图3(其中AD∥BC)和图4(其中AB∥DC)的两种情形分别画出剪拼成一个平行四边形的示意图.3.小明通过探究后发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.如图5的多边形中,AE=CD,AE∥CD,能否象上面剪切方法一样沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.25.(12分)已知x=1﹣,y=1+,求下列代数式的值:(1)x1+1xy+y1;(1)x1﹣y1.26.规定一种新的运算“”,其中和是关于的多项式.当的次数小于的次数时,;当的次数等于的次数时,的值为、的最高次项的系数的商;当的次数大于的次数时,不存在.例如:,(1)求的值.(2)若,求:的值.

参考答案一、选择题(每题4分,共48分)1、D【解题分析】根据科学记数法可表示为:(,n为整数)表达即可.【题目详解】解:,故答案为:D.【题目点拨】本题考查了绝对值小于1的科学记数法的表示,熟记科学记数法的表示方法是解题的关键.2、B【分析】根据比例的性质,可用x表示y、z,根据分式的性质,可得答案.【题目详解】设=k,则x=2k,y=7k,z=5k代入原式原式==故答案为:2.【题目点拨】本题考查了比例的性质,解题的关键是利用比例的性质,化简求值.3、C【分析】根据勾股定理求出BC,当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP时,分别求出BP的长度,继而可求得t值.【题目详解】因为中,,,,所以(cm)①当AB=BP时,t=(s);②当AB=AP时,因为AC⊥BC,所以BP=2BC=24cm,所以t=(s);③当BP=AP时,AP=BP=2tcm,CP=(12-2t)cm,AC=5cm,在Rt△ACP中,AP2=AC2+CP2,所以(2t)2=52+(12-2t)2,解得:t=综_上所述:当△ABP为等腰三角形时,或或12故选:C【题目点拨】考核知识点:等腰三角形,勾股定理.根据题画出图形,再利用勾股定理解决问题是关键.4、B【分析】在直角三角形BAC中,先求出AB长,四边形的面积即为图中阴影部分三角形面积的4倍,求出阴影部分三角形面积即可求解.【题目详解】再Rt△BAC中∴S△ABC=∴S四边形=4S△ABC=16故选:B【题目点拨】本题考查了图形的折叠问题,发挥空间想象力,能够得出S四边形=4S△ABC是解题的关键.5、B【分析】根据x轴上点的特点解答即可.【题目详解】在平面直角坐标系中x轴上点的特点是:所有点的纵坐标都为0,故选B.【题目点拨】本题是一道基础题,考查平面直角坐标系的特点,解题的关键是掌握平面直角坐标系的基本特征即可.6、B【分析】根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合2018=504×4+2即可找出点A2018的坐标.【题目详解】解:当x=1时,y=2,

∴点A1的坐标为(1,2);

当y=-x=2时,x=-2,

∴点A2的坐标为(-2,2);

同理可得:A3(-2,-4),A4(4,-4),A5(4,8),A6(-8,8),A7(-8,-16),A8(16,-16),A9(16,32),…,

∴A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),

A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数).

∵2018=504×4+2,

∴点A2018的坐标为(-2504×2+1,2504×2+1),即(-21009,21009).

故选:B.【题目点拨】本题考查了一次函数图象上点的坐标特征、正比例函数的图象以及规律型中点的坐标,根据坐标的变化找出变化规律是解题的关键.7、D【分析】由全等三角形的性质可求解.【题目详解】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,

∴AB=AC,AD=AE,BE=CD,∠BAE=∠CAD,∴∠BAD=∠CAE

故选D.【题目点拨】本题考查了全等三角形的性质,灵活运用全等三角形的性质是本题的关键.8、B【解题分析】试题分析:考点:根据等腰三角形有两边相等,可知三角形的三边可以为2,2,5;2,5,5,然后根据三角形的三边关系可知2,5,5,符合条件,因此这个三角形的周长为2+5+5=1.故选B考点:等腰三角形,三角形的三边关系,三角形的周长9、B【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE-BG=2,HE=CH-CE=2,∠HEG=90°,从而由勾股定理可得GH的长.【题目详解】解:如图,延长BG交CH于点E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=CD=10,∵AG=8,BG=6,∴AG2+BG2=AB2,∴∠AGB=90°,∴∠1+∠2=90°,又∵∠2+∠3=90°,∴∠1=∠3,同理:∠4=∠6,在△ABG和△CDH中,AB=CD=10AG=CH=8BG=DH=6∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∴∠2=∠4,在△ABG和△BCE中,∵∠1=∠3,AB=BC,∠2=∠4,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE-BG=8-6=2,同理可得HE=2,在Rt△GHE中,,故选:B.【题目点拨】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为直角三角形且能够求出两条直角边的长是解题的关键.10、A【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数代入计算可解答.【题目详解】解:由题意得:,解得:a=6,b=4,故答案为:A.【题目点拨】本题考查的知识点是关于x轴对称的点的坐标之间的关系,当所求的坐标是关于x轴对称时,原坐标的横坐标不变,纵坐标为其相反数;当所求的坐标是关于y轴对称时,原坐标的纵坐标不变,横坐标为其相反数;当所求的坐标是关于原点对称时,原坐标的横、纵坐标均变为其相反数.11、D【分析】先把各二次根式化为最简二次根式,再合并同类二次根式,或者根据乘法公式进行计算.【题目详解】A选项:,本选项错误;B选项:,本选项错误;C选项:,本选项错误;D选项:,本选项正确.故选D.【题目点拨】本题考查了二次根式的混合运算,关键要先把各二次根式化为最简二次根式.12、A【解题分析】根据分式的性质,要使分式有意义,则分式的分母不等于0.【题目详解】根据题意可得要使分式有意义,则所以可得故选A.【题目点拨】本题主要考查分式的性质,关键在于分式的分母不能为0.二、填空题(每题4分,共24分)13、【解题分析】由,得x−y=y,即x=y,故=.故答案为.14、x>1【分析】当x+1>mx+n时,直线在直线的上方,根据图象即可得出答案.【题目详解】当x+1>mx+n时,直线在直线的上方,根据图象可知,当直线在直线的上方时,x的取值范围为x>1,所以的不等式x+1>mx+n的解集为x>1故答案为:x>1.【题目点拨】本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.15、3.1【解题分析】近似数π=3.1415926…精确到千分位,即是保留到千分位,由于千分位1后面的5大于4,故进1,得3.1.【题目详解】解:圆周率π=3.1415926…精确到千分位的近似数是3.1.故答案为3.1.【题目点拨】本题考查了近似数和精确度,精确到哪一位,就是对它后边的一位进行四舍五入.16、1【分析】根据点到x轴的距离等于纵坐标的绝对值解答.【题目详解】解:点P(−2,−1)到x轴的距离是1.故答案为1.【题目点拨】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值是解题的关键.17、±1【解题分析】分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根:∵(±1)2=21,∴21的平方根是±1.18、90°.【解题分析】试题解析:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM-∠ABC=60°,∠ACB=180°-∠ACM=80°,∴∠BCP=∠ACB+∠ACP=130°,∵∠PBC=20°,∴∠P=180°-∠PBC-∠BCP=30°,∴∠A+∠P=90°.考点:1.三角形内角和定理;2.三角形的角平分线、中线和高;3.三角形的外角性质.三、解答题(共78分)19、(3)小王购买A,B两种品牌龟苓膏粉分别为633包,433包(4)y=-4x+43533(3)A品牌的龟苓膏粉每包定价不低于44元时才不亏本【解题分析】试题分析:(3)设小王需购买A、B两种品牌龟苓膏粉分别为x包、y包,根据题意列方程解出即可;(4)根据题意,可得y=533+3.8×[43x+45(3333﹣x)],据此求出y与x之间的函数关系式即可.(3)先求出小王购买A、B两种品牌龟苓膏粉分别为多少包,然后设A种品牌龟苓膏粉的售价为z元,则B种品牌龟苓膏粉的售价为z+5元,所以345z+875(z+5)≥43333+8×3333,据此求出A品牌的龟苓膏粉每包定价不低于多少元时才不亏本即可.试题解析:(3)设小王需购买A、B两种品牌龟苓膏粉分别为x包、y包,则,解得:,∴小王购买A、B两种品牌龟苓膏粉分别为633包、433包;(4)y=533+3.8×[43x+45(3333﹣x)]=533+3.8×[45333﹣5x]=533+43333﹣4x=﹣4x+43533,∴y与x之间的函数关系式是:y=﹣4x+43533;(3)由(4),可得:43333=﹣4x+43533,解得x=345,∴小王购买A、B两种品牌龟苓膏粉分别为345包、875包,设A种品牌龟苓膏粉的售价为z元,则B种品牌龟苓膏粉的售价为z+5元,∴345z+875(z+5)≥43333+8×3333,解得z≥4.645,∴A品牌的龟苓膏粉每包定价不低于44元时才不亏本.考点:3.一次函数的应用;4.综合题.20、(1)①20°,10°;②α=2β;(2)见解析.【题目详解】(1)①∵AD=AE,∴∠AED=∠ADE=70°,∠DAE=40°,又∵AB=AC,∠ABC=60°,∴∠BAC=∠C=∠ABC=60°,∴α=∠BAC-∠DAE=60°-40°=20°,β=∠AED-∠C=70°-60°=10°;②设∠ABC=x,∠ADE=y,则∠ACB=x,∠AED=y,在△DEC中,y=β+x,在△ABD中,α+x=y+β,∴α=2β.(2)如图1,点E在CA延长线上,点D在线段BC上,设∠ABC=x,∠ADE=y,则∠ACB=x,∠AED=y,在△ABD中,x+α=β-y,在△DEC中,x+y+β=180°,∴α=2β-180°.当点E在CA的延长线上,点D在CB的延长线上,如图2,同①的方法可得α=180°−2β.考点:等腰三角形的性质;三角形内角和定理;三角形的外角性质.21、(1);(2)证明见解析;(3)点P在过点B且与AB垂直的直线上,;(4).【分析】(1)作BD⊥x轴,与x轴交于D,利用等边三角形的性质和勾股定理即可解得;(2)根据等边三角形的性质可得两组对应边相等,再结合角的和差可得∠BAP=∠OAC,再利用SAS可证得全等;(3)由(2)可知PB⊥AB,由此可得P的运动轨迹,再求得AB的解析式,根据垂直的两条直线的一次项系数互为负倒数设BP的解析式,将B点坐标代入即可求得解析式;(4)利用两点之间距离公式求得P点坐标,再利用勾股定理求得BP,结合(2)可知OC=BP,由此可得C点坐标.【题目详解】解:(1)∵A(0,2),∴OA=2,过点B作BD⊥x轴,∵△OAB为等边三角形,OA=2,∴OB=OA=2,OD=1,∴即,故答案为:;(2)证明:∵△OAB和ACP为等边三角形,∴AC=AP,AB=OA,∠CAP=∠OAB=60°,∴∠BAP=∠OAC,∴(SAS);(3)如上图,∵,∴∠ABP=∠AOC=90°,∴点P在过点B且与AB垂直的直线上.设直线AB的解析式为:,则,解得:,∴,∴设直线BP的解析式为:,则,解得,故;(4)设,∵OP=OB,∴,解得:,(舍去),故此时,,∵点A、C、P按逆时针方向排列,∴,故答案为:.【题目点拨】本题考查求一次函数解析式,勾股定理,全等三角形的性质和判定,等边三角形的性质.解题的关键是正确寻找全等三角形解决问题.22、(1);(2)①△MBC的周长为20cm;②点P位置见解析,最小值为12cm;理由见解析;③证明见解析.【分析】(1)先根据等腰三角形的性质和三角形的内角和定理求出∠A的度数,再根据直角三角形的性质求解即可;(2)①根据线段垂直平分线的性质可得AM=BM,再根据三角形的周长和线段间的等量关系解答即可;②由于点B、A关于直线MN对称,所以AC与MN的交点即为所求的点P,于是PB+CP的最小值即为AC的长,据此解答即可;③方法一:如图1,取AC中点G,连接GD,根据三角形的中位线定理可得GD∥AB,GD=BN,进而可得∠A=∠DGC,在△GDM中,根据等腰三角形的性质和角的代换可得∠GMD>∠DGM,进一步即可证得结论;方法二:如图2,延长MD至H,使DH=DM,连接BH,根据SAS可证△MDC≌△HDB,可得BH=MC,然后根据三角形的三边关系和线段间的等量关系可得AC>2DM,进一步即可证得结论.【题目详解】(1)解:∵AB=AC,∴∠ABC=∠C=65°,∴,∵MN⊥AB,∴∠ANM=90°,∴;(2)解:①由MN垂直平分AB得:AM=BM,于是△MBC的周长=BM+MC+BC=AM+MC+BC=AC+BC=12+8=20(cm);②解:∵点B、A关于直线MN对称,所以AC与MN的交点M即为PB+CP值最小时的点P,如图,且最小值为AC=12cm;③证明:方法一:如图1,取AC中点G,连接GD,则GD∥AB,且,∴∠A=∠DGC,在△ABC中,AB=AC=12,BC=8,∴AB>BC,∴∠C>∠A,在△GDM中,DM所对的角为∠DGM=∠A,DG所对的角为∠GMD=∠C+∠MDC>∠A,即∠GMD>∠DGM,∴GD>DM,即MD<BN;方法二:如图2,延长MD至H,使DH=DM,连接BH,∵DH=DM,∠MDC=∠HDB,CD=BD,∴△MDC≌△HDB(SAS),∴BH=MC,在△BHM中,BH+BM>HM,即MC+AM>2DM,∴AC>2DM,即2BN>2DM,∴DM<BN.【题目点拨】本题考查了等腰三角形的性质、线段垂直平分线的性质、三角形的内角和定理、三角形的中位线定理、全等三角形的判定和性质、求两线段的最小值以及三角形的边角关系等知识,综合性较强、但难度不大,正确作出辅助线、熟练掌握上述知识是解题的关键.23、答案不唯一.【分析】答案不唯一,学生只要是通过分析表格中所给数据而得出的结论,同时言之有理即可.【题目详解】答案不唯一,学生只要是通过分析表格中所给数据而得出的结论,同时言之有理即可给分,否则不给

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论