吉林省朝鲜族四校联考2024届八上数学期末联考模拟试题含解析_第1页
吉林省朝鲜族四校联考2024届八上数学期末联考模拟试题含解析_第2页
吉林省朝鲜族四校联考2024届八上数学期末联考模拟试题含解析_第3页
吉林省朝鲜族四校联考2024届八上数学期末联考模拟试题含解析_第4页
吉林省朝鲜族四校联考2024届八上数学期末联考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省朝鲜族四校联考2024届八上数学期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下面有4个汽车商标图案,其中是轴对称图形的是()A. B. C. D.2.如图,在△ABC中,∠ACB=90°,∠A=26°,BC=BD,则∠ACD的度数是()A.64° B.42° C.32° D.26°3.下列“表情图”中,属于轴对称图形的是A. B. C. D.4.已知,一次函数和的图像如图,则下列结论:①k<0;②a>0;③若≥,则≤3,则正确的个数是()A.0个 B.1个 C.2个 D.3个5.在四个数中,满足不等式的有()A.1个 B.2个 C.3个 D.4个6.若,则下列各式中不一定成立的是()A. B. C. D.7.若关于的方程的解是正数,则的取值范围是()A. B.且 C.且 D.且8.若分式的值为零,则的值为()A.2 B.3 C.﹣2 D.﹣39.若3n+3n+3n=,则n=()A.﹣3 B.﹣2 C.﹣1 D.010.如图,在Rt△ABC中,∠ACB=90°,D是AB中点,AB=10,则CD的长为()A.5 B.6 C.8 D.10二、填空题(每小题3分,共24分)11.0.000608用科学记数法表示为.12.克盐溶解在克水中,取这种盐水克,其中含盐__________克.13.因式分解=.14.式子在实数范围内有意义,则x的取值范围是_______.15.如图,在平面直角坐标系中,点A1,A2,A3…都在x轴上,点B1,B2,B3…都在直线上,,,…,都是等腰直角三角形,若OA1=1,则点B2020的坐标是_______.16.如图,在中,,,,以点为圆心,长为半径作弧,交于点,再分别以点和点为圆心,大于的长为半径作弧,两弧相交于点,作射线交于点,则的长为______.17.的平方根是____.18.如图,已知△ABC的六个元素,其中a、b、c表示三角形三边的长,则下面甲、乙、丙三个三角形中和△ABC一定全等的图形是__.三、解答题(共66分)19.(10分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4),(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出点B1的坐标;(2)在x轴上求作一点P,使△PAB的周长最小,并直接写出点P的坐标.20.(6分)先化简,再求值:,其中的值是从的整数值中选取.21.(6分)探究下面的问题:(1)如图甲,在边长为a的正方形中去掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图乙的一个长方形,通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是________(用式子表示),即乘法公式中的___________公式.(2)运用你所得到的公式计算:①10.7×9.3②22.(8分)如图1,某容器外形可看作由三个长方体组成,其中的底面积分别为的容积是容器容积的(容器各面的厚度忽略不计).现以速度(单位:)均匀地向容器注水,直至注满为止.图2是注水全过程中容器的水面高度(单位:)与注水时间(单位:)的函数图象.在注水过程中,注满所用时间为______________,再注满又用了______________;注满整个容器所需时间为_____________;容器的总高度为____________.23.(8分)把下列各式因式分解:(1)(2)24.(8分)计算:(1)•(6x2y)2;(2)(a+b)2+b(a﹣b).25.(10分)甲、乙两班参加植树活动.乙班先植树30棵,然后甲班才开始与乙班一起植树.设甲班植树的总量为(棵),乙班植树的总量为(棵),、与甲班植树的时间x(时),之间的部分函数图象如图所示.(1)当时,分别求、与x之间的函数关系式;(2)若甲班植树6个小时后,该班仍保持原来的工作效率,乙班则通过加人数提高了工作效率,这样又植树2小时后,两班植树的总量相差20棵,求乙班增加人数后平均每小时植树多少棵?26.(10分)如图,在等边中,点,分别是,上的动点,且,交于点.(1)如图1,求证;(2)点是边的中点,连接,.①如图2,若点,,三点共线,则与的数量关系是;②若点,,三点不共线,如图3,问①中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【题目详解】解:①②③都是轴对称图形,④不是轴对称图形,故选B.【题目点拨】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.2、C【分析】根据直角三角形的性质可求∠B的度数,再根据等腰三角形的性质可求∠BCD的度数,从而可求出∠ACD的度数.【题目详解】解:∵在△ABC中,∠ACB=90°,∠A=26°,∴∠B=64°,∵BC=BD,∴∠BCD=(180°﹣64°)÷2=58°,∴∠ACD=90°﹣58°=32°.故选:C.【题目点拨】本题考查了等腰三角形的性质,三角形的内角和定理,关键是求出∠BCD的度数.3、D【解题分析】根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,因此,A、B,C不是轴对称图形;D是轴对称图形.故选D.4、C【分析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x3时,y1图象在y2的图象的上方.【题目详解】根据图示及数据可知:

①y1=kx+b的图象经过一、二四象限,则k<0,故①正确;

②y2=x+a的图象与y轴的交点在x轴的下方,a<0,故②错误;

③当x3时,y1图象在y2的图象的上方,则y1y2,故③正确.

综上,正确的个数是2个.

故选:C.【题目点拨】本题考查了一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.5、B【分析】分别用这四个数与进行比较,小于的数即是不等式的解.【题目详解】解:∵,,,∴小于的数有2个;∴满足不等式的有2个;故选择:B.【题目点拨】本题考查了不等式的解,以及比较两个实数的大小,解题的关键是掌握比较两个有理数的大小的法则.6、D【分析】根据不等式的性质进行解答.【题目详解】A、在不等式的两边同时减去1,不等式仍成立,即,故本选项不符合题意.

B、在不等式的两边同时乘以3,不等式仍成立,即,故本选项不符合题意.

C、在不等式的两边同时乘以-1,不等号方向改变,即,故本选项不符合题意.

D、当时,不等式不一定成立,故本选项符合题意.

故选:D.【题目点拨】本题考查了不等式的性质,做这类题时应注意:在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.7、C【分析】解分式方程,可得分式方程的解,根据分式方程的解是正数且分式方程有意义,可得不等式组,解不等式组,可得答案.【题目详解】,方程两边都乘以(x−2),得:2x+m=3x−6,解得:x=m+6,由分式方程的意义,得:m+6−2≠0,即:m≠−4,由关于x的方程的解是正数,得:m+6>0,解得:m>−6,∴m的取值范围是:m>−6且m≠−4,故选:C.【题目点拨】本题主要考查根据分式方程的解的情况,求参数的范围,掌握解分式方程,是解题的关键.8、A【解题分析】分析:要使分式的值为1,必须分式分子的值为1并且分母的值不为1.详解:要使分式的值为零,由分子2-x=1,解得:x=2.而x-3≠1;所以x=2.故选A.点睛:要注意分母的值一定不能为1,分母的值是1时分式没有意义.9、A【分析】直接利用负整数指数幂的性质结合同底数幂的乘法运算法则将原式变形得出答案.【题目详解】解:,,则,解得:.故选:.【题目点拨】此题主要考查了负整数指数幂的性质以及同底数幂的乘法运算,正确掌握相关运算法则是解题关键.10、A【分析】根据直角三角形斜边上的中线等于斜边的一半解答即可.【题目详解】∵∠ACB=90°,D是AB中点,∴CD=AB=5,故选:A.【题目点拨】本题考查的是直角三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.二、填空题(每小题3分,共24分)11、6.08×10﹣1【解题分析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000608用科学记数法表示为6.08×10﹣1,故答案为6.08×10﹣1.考点:科学记数法—表示较小的数.12、【分析】盐=盐水×浓度,而浓度=盐÷(盐+水),根据式子列代数式即可.【题目详解】解:该盐水的浓度为:,故这种盐水m千克,则其中含盐为:m×=克.故答案为:.【题目点拨】本题考查了列代数式,解决问题的关键是找到所求的量的等量关系.本题需注意浓度=溶质÷溶液.13、.【题目详解】试题分析:原式=.故答案为.考点:提公因式法与公式法的综合运用.14、x≥1【分析】直接利用二次根式的有意义的条件得到关于x的不等式,解不等式即可得答案.【题目详解】由题意可得:x﹣1≥0,解得:x≥1,故答案为x≥1.【题目点拨】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.15、【分析】根据等腰直角三角形的性质和一次函数上点的特征,依次写出,,,....找出一般性规律即可得出答案.【题目详解】解:当x=0时,,即,∵是等腰直角三角形,∴,将x=1代入得,∴,同理可得……∴.故答案为:.【题目点拨】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线,直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了等腰直角三角形的性质.16、4.1【分析】根据勾股定理计算出AB的长,再由作图可知CE垂直平分BD,然后利用等面积法计算CF即可.【题目详解】连接CD、DE、BE,由题可知,BC=DC,DE=BE,∴CE垂直平分BD,∵在Rt△ABC中,AC=1,BC=6,∴AB=,∵S△ABC=AC•BC=AB•CF,∴×1×6=×10•CF,∴CF=4.1.故答案为:4.1.【题目点拨】本题考查垂直平分线的判定,勾股定理,明确垂直平分线判定定理及勾股定理,掌握等面积法是解题关键.17、±3【题目详解】∵=9,∴9的平方根是.故答案为3.18、乙和丙【分析】两边及其夹角分别对应相等的两个三角形全等,两角及其中一个角的对边对应相等的两个三角形全等.分别利用全等三角形的判定方法逐个判断即可.【题目详解】解:由SAS可知,图乙与△ABC全等,由AAS可知,图丙与△ABC全等,故答案为:乙和丙.【题目点拨】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即、、、和.三、解答题(共66分)19、(1)详见解析,B1的坐标为(﹣4,2);(2)(2,0).【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(2)作点A关于x轴的对称点,再连接A′B,与x轴的交点即为所求.【题目详解】(1)如图所示,△A1B1C1即为所求,其中点B1的坐标为(﹣4,2).(2)如图所示,点P即为所求,其坐标为(2,0).【题目点拨】本题考查了坐标轴画图的问题,掌握坐标轴的性质以及关于y轴对称的点的性质是解题的关键.20、,【分析】先对括号内的式子进行通分,然后再约分,将x=2代入化简后的式子计算即可得出答案.【题目详解】解:原式已知的整数有,分母,,,,且,且,.当时,原式.【题目点拨】本题考查的是分式的化简求值,比较简单,注意代值时要排除掉使分式无意义的值,不要随便代数.21、(1)a2-b2=(a+b)(a-b);平方差;(2)①99.51;②x2-6xz+9z2-4y2.【分析】(1)这个图形变换可以用来证明平方差公式:已知在左图中,大正方形减小正方形剩下的部分面积为a2-b2;因为拼成的长方形的长为(a+b),宽为(a-b),根据“长方形的面积=长×宽”代入为:(a+b)×(a-b),因为面积相等,进而得出结论.(2)①将10.7×9.3化为(10+0.7)×(10-0.7),再用平方差公式求解即可.②利用平方差公式和完全平方公式求解即可.【题目详解】(1)由图知:大正方形减小正方形剩下的部分面积为a2-b2;拼成的长方形的面积:(a+b)×(a−b),所以得出:a2-b2=(a+b)(a−b);故答案为:a2-b2=(a+b)(a−b);平方差(2)①原式=(10+0.7)×(10-0.7)=102-0.72=100-0.49=99.51.②原式=(x-3z+2y)(x-3z-2y)=(x-3z)2-(2y)2=x2-6xz+9z2-4y2.【题目点拨】此题考查正方形的面积,平方差、完全平方公式,解题关键在于求解长方形、正方形的面积.22、(1)10,8;(2)1;(3)1【分析】(1)根据函数图象可直接得出答案;(2)设容器A的高度为hAcm,注水速度为vcm3/s,根据题意和函数图象可列出一个含有hA及v的二元一次方程组,求出v后即可求出C的容积,进一步即可求出注满C的时间,从而可得答案;(3)根据B、C的容积可求出B、C的高度,进一步即可求出容器的高度.【题目详解】解:(1)根据函数图象可知,注满A所用时间为10s,再注满B又用了18-10=8(s);故答案为:10,8;(2)设容器A的高度为hAcm,注水速度为vcm3/s,根据题意和函数图象得:,解得:;设C的容积为ycm3,则有4y=10v+8v+y,将v=10代入计算得y=60,∴注满C的时间是:60÷v=60÷10=6(s),故注满这个容器的时间为:10+8+6=1(s).故答案为:1;(3)∵B的注水时间为8s,底面积为10cm2,v=10cm3/s,∴B的高度=8×10÷10=8(cm),∵C的容积为60cm3,∴容器C的高度为:60÷5=12(cm),故这个容器的高度是:4+8+12=1(cm);故答案为:1.【题目点拨】本题考查了函数图象和二元一次方程组的应用,读懂图象提供的信息、弄清题目中各量的关系是解题的关键.23、(1);(2)【分析】(1)直接提取公因式,再利用平方差公式分解因式即可;(2)直接提取公因式-y,再利用完全平方公式分解因式即可.【题目详解】解:(1)(2)【题目点拨】本题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.24、(1)12x3y2;(2)a2+3ab.【分析】(1)根据分式的乘除法以及积的乘方的运算法则计算即可.

(2)应用完全平方公式,以及单项式乘多项式的方法计算即可.【题目详解】(1)•(6x2y)2;=•(36x4y2)=12x3y2;(2)(a+b)2+b(a﹣b)=a2+2ab+b2+ab﹣b2=a2+3ab.【题目点拨】本题主要考查了分式的乘除,单项式乘多项式以及完全平方公式的应用,要熟练掌握.25、(1)y甲=1x,y乙=10x+30;(2)乙班增加人数后平均每小时植树45棵或2棵.【分析】(1)通过看图,分析各数据,利用待定系数法即可求得函数关系式;(2)相差1棵有两种情况,可以是甲比乙多,也可以是乙比甲多,据此分别列出方程求解即可.【题目详解】解:(1)设y甲=k1x,将(6,11)代入,得k1=1;

∴y甲=1x;

当x=3时,y甲=60,

设y乙=k2x+b,分别将(0,30),(3,60),解得:,故y乙=10x+30;(2)设乙班增加人数后平均每小时植树a棵.

当乙班比甲班多植树1棵时,有(6×10+30+2a)-1×8=1.

解得a=45;

当甲班比乙班多植树1棵时,有1×8-(6×10+30+2a)=1.

解得a=2.

所以乙班增加人数后平均每小时植树45棵或2棵.【题目点拨】本题考查一次函数的应用.(1)读懂图象信息,用待定系数法求函数解析式.(2)植树总量相差1棵要分:甲比乙多和乙比甲多两种情况讨论.此问学生可能考虑不全.26、(1)证明过程见详解;(2)①;②结论成立,证明见详解【分析】(1)先证明,得出对应角相等,然后利用四边形的内角和和对顶角相等即可得出结论;(2)①;由等边三角形的性质和已知条件得出AM⊥BC,∠CAP=30°,可得PB=PC,由∠BPC=120°和等腰三角形的性质可得∠PCB=30°,进而可得AP=PC,由30°角的直角三角形的性质可得PC=2PM,于是可得结论;②延长BP至D,使PD=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论